

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Белорусский национальный технический университет

Кафедра «Промышленная теплоэнергетика и теплотехника»

К. В. Добрего Р. И. Есьман И. Л. Иокова

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

Учебно-методическое пособие

Минск БНТУ 2015 Кафедра «Промышленная теплоэнергетика и теплотехника»

К. В. Добрего Р. И. Есьман И. Л. Иокова

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

Учебно-методическое пособие для студентов специальностей 1-43 01 05 «Промышленная теплоэнергетика», 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки атомных электрических станций», 1-53 01 04 «Автоматизация и управление энергетическими процессами»

Рекомендовано учебно-методическим объединением по образованию в области энергетики и энергетического оборудования

> Минск БНТУ 2015

Репензенты:

кафедра «Информационные технологии в образовании» БГПУ; П. В. Акулич, профессор, доктор технических наук, главный научный сотрудник Института тепло- и массообмена имени А. В. Лыкова НАН Беларуси

Добрего, К. В.

Д55 Техническая термодинамика : учебно-методическое пособие для студентов специальностей 1-43 01 05 «Промышленная теплоэнергетика», 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки атомных электрических станций», 1-53 01 04 «Автоматизация и управление энергетическими процессами»/ К. В. Добрего, Р. И. Есьман, И. Л. Иокова. -Минск : БНТУ. 2015. – 73 с. ISBN 978-985-550-686-8

Учебно-методическое пособие составлено в соответствии с программой дисциплины «Техническая термодинамика» для энергетических специальностей вузов.

Включены темы «Циклы поршневых ДВС», «Циклы газотурбинных, паротурбинных и холодильных установок», а также «Циклы АЭС». По отдельным темам дисциплины разработаны методические указания и методики расчетов, способствующие более глубокому изучению и усвоению материла. Типовые задачи выбраны таким образом, чтобы сосредоточить внимание студентов на основных практических расчетах тепловых двигателей, паросиловых, газотурбинных и холодильных установок, используемых в различных отраслях народного хо-

зяйства Беларуси.

Отдельные задачи снабжены решениями, в приложениях приведены таблицы и практические диаграммы, используемые в расчетах.

> УДК 621.1.016.7 (075.8) ББК 31.31я7

© Добрего К. В., Есьман Р. И., Иокова И. Л., 2015 © Белорусский национальный

ISBN 978-985-550-686-8

технический университет, 2015

Введение

Дисциплина «Техническая термодинамика» является одной из базовых дисциплин теоретических основ теплотехники и теплоэнергетики, играющих важную роль в подготовке инженера-энергетика для работы на объектах энергетики, промышленных предприятиях и в других энергопотребляющих отраслях народного хозяйства.

Изучение дисциплины «Техническая термодинамика» студентами, обучающимися по специальностям 1-43 01 05 «Промышленная теплоэнергетика», 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки АЭС», 1-53 01 04 «Автоматизация и управление энергетическими процессами», является базой для более глубокого освоения современного теплоэнергетического и холодильного оборудования, используемого в технологических процессах различных отраслей народного хозяйства с целью максимальной экономии топлива и материальных ресурсов, интенсификации и оптимизации современных теплотехнологических процессов, выявления и использования ВЭР (вторичных энергоресурсов), диверсификации инновационных энергосберегающих технологий в энергетической, машиностроительной и других отраслях промышленного производства.

В предлагаемом методическом пособии приведены отдельные типовые задачи с решениями по расчету циклов тепловых двигателей, теплосиловых установок и холодильных машин, представляющих интерес для студентов энергетических специальностей.

1. ОБЩИЕ УКАЗАНИЯ

Изучению дисциплины «Техническая термодинамика» должна предшествовать глубокая проработка современного состояния энергетики в Республике Беларусь, пути совершенствования теплоэнергетического оборудования и теплотехнологий промышленного производства. Важным фактором в дальнейшем развитии теплоэнергетики в Республике Беларусь является интеграция со странами СНГ, а также с другими странами в рамках все более открытого сотрудничества по обмену опытом, новыми технологиями и конструктивными идеями в области энергетики. Информационная база данных по изучаемой дисциплине включает: получение информации на лекциях;

самостоятельную работу над учебниками и учебно-методическими пособиями;

выполнение контрольных, курсовых и лабораторных работ;

приобретение навыков решения конкретных типовых задач на практических занятиях;

получение консультаций на кафедре «Промышленная теплоэнергетика и теплотехника» по вопросам, возникающим при изучении материала.

2. ТЕРМОДИНАМИКА ГАЗОВЫХ ЦИКЛОВ

2.1. Расчет циклов двигателей внутреннего сгорания

Двигатель внутреннего сгорания осуществляет преобразование теплоты, полученной при сгорании топлива, в механическую работу. В основу анализа действительных циклов поршневых двигателей внутреннего сгорания положены следующие три теоретических цикла:

– цикл с подводом теплоты при постоянном объеме (v = const), который по характеру протекания процессов близок к рабочему циклу карбюраторного двигателя;

– цикл с подводом теплоты при постоянном давлении (p = const), близкий к циклам в компрессорных дизелях;

– цикл с подводом теплоты при постоянных объеме и давлении (v = const и p = const) – обобщенный цикл по подводу теплоты, близкий к циклам бескомпрессорных дизелей.

Во всех трех циклах отвод теплоты осуществляется при постоянном объеме.

При рассмотрении теоретических циклов принимаются следующие допущения:

 – циклы являются замкнутыми (обратимыми) и протекают при постоянном количестве одного и того же рабочего тела (идеального газа);

 теплоемкость рабочего тела на протяжении всего цикла считается постоянной, не зависящей от температуры; процесс сгорания топлива в цилиндре заменяется мгновенным условным подводом теплоты, а выброс отработанных газов – мгновенным условным отводом теплоты;

 – сжатие и расширение рабочего тела осуществляется в адиабатном процессе, т. е. без теплообмена с окружающей (внешней) средой.

Методика расчета обобщенного цикла с последовательным подводом теплоты при постоянном объеме и давлении. Введем следующие обозначения безразмерных параметров циклов:

 $\varepsilon = v_a / v_c$ – степень предварительного расширения;

 $\delta = v_b / v_c$ – степень повышения давления;

 $k = c_p / c_v$ – показатель адиабаты.

Как было отмечено, совершенство термодинамического цикла оценивается его термическим КПД. Для рассматриваемого цикла

$$q_{1} = q'_{1} + q''_{1} = c_{v} \left(T_{z'} - T_{c} \right) + c_{p} \left(T_{z} - T_{z'} \right);$$
$$q_{2} = c_{v} \left(T_{b} - T_{a} \right).$$

Подставляя q_1 и q_2 в формулу

$$\eta_t = 1 - q_2 / q_1$$
,

получим

$$\eta_{t} = 1 - \frac{c_{v} (T_{b} - T_{a})}{c_{v} (T_{z'} - T_{c}) + c_{p} (T_{z} - T_{z})}.$$

Воспользовавшись основными термодинамическими закономерностями, температуру в характерных точках выразим через начальную температуру T_a и безразмерные параметры цикла.

Запишем уравнения состояния для рабочего тела в точках *а* и *с* рис. 2.1:

 $p_c v_c = RT_c$, $p_a v_a = RT_a$.

Рис. 2.1. Цикл ДВС с подводом теплоты при постоянном объёме и давлении на диаграммах *p*–v и *T*–s

Разделив первое уравнение на второе, получим

$$\frac{T_c}{T_a} = \frac{p_c}{p_a}, \quad \frac{v_c}{v_a} = \frac{1}{\varepsilon} \cdot \frac{p_c}{p_a},$$

откуда

$$T_c = \frac{1}{\varepsilon} \cdot \frac{p_c}{p_a} T_a.$$

Из уравнения адиабаты имеем $p_a v_a^k = p_c v_c^k$ и $\frac{p_c}{p} = \left(\frac{v_a}{v_c}\right)^k = \varepsilon^k$.

Тогда температура в точке с

$$T_c = T_a \varepsilon^{k-1} \,.$$

Записав уравнения состояния газа для точек z' и c и разделив их почленно, получим

$$p'_{z} \mathbf{v}_{z'} = RT_{z'}; \quad p_{c} \mathbf{v}_{c} = RT_{c};$$
$$\frac{T_{z}}{T_{c}} = \frac{p_{z'}}{p_{c}} \cdot \frac{\mathbf{v}_{z'}}{\mathbf{v}_{c}}.$$

Так как $\mathbf{v}_{z'}=\mathbf{v}_c$
и $~p_{z'}=p_z$, то $~\mathbf{v}_{z'}$ / $\mathbf{v}_c=1$;

$$p_{z'} / p_c = p_z / p_c = \lambda_p ,$$

тогда

$$T_{z'} / T_c = \lambda_p;$$

$$T_{z'} = \lambda_p T_c = \lambda_p T_a \varepsilon^{k-1}.$$

Из уравнений состояния газа для точек z и z' получим

$$p_z v_z = RT_z;$$

$$p_{z'} v_{z'} = RT_{z'};$$

$$\frac{T_z}{T_{z'}} = \frac{p_z}{p_{z'}} \cdot \frac{v_z}{v_{z'}}.$$

Так как

$$p_{z} / p_{z'} = 1; \quad v_{z} / v_{z} = v_{z} / v_{c} = p,$$
$$T_{z} = T_{z'}\rho = \lambda T_{a}\varepsilon^{k-1}\rho = T_{a}\lambda_{p}\rho\varepsilon^{k-1}.$$

то

Наконец, из уравнений состояния газа в точках *z* и *b* из уравнения адиабаты имеем

$$p_b \mathbf{v}_b = RT_b ; \qquad p_z \mathbf{v}_z = RT_z ;$$
$$\frac{T_b}{T_z} = \frac{p_b}{p_z} \cdot \frac{\mathbf{v}_b}{\mathbf{v}_z} = \delta \frac{p_b}{p_z} ;$$
$$p_b \mathbf{v}_b^k = p_z \mathbf{v}_z^k ; \quad \frac{p_b}{p_z} = \left(\frac{\mathbf{v}_z}{\mathbf{v}_b}\right)^k = \frac{1}{\delta^k} .$$

Значит,

$$T_b / T_z = \delta / \delta^k = \delta / \delta^{k-1},$$

откуда

$$T_b = T_z \frac{1}{\delta^{k-1}} = \lambda_p T_a \varepsilon^{k-1} \rho \frac{1}{\delta^{k-1}} = T_a \frac{\lambda_p \rho}{\delta^{k-1}} \varepsilon^{k-1} .$$

Подставляя значения температур в характерных точках в выражение для КПД цикла, получим

$$\eta_t = 1 - \frac{c_v T_a \left(\lambda_p \varepsilon^{k-1} \rho \frac{1}{\delta^{k-1}} - 1\right)}{c_v T_a \varepsilon^{k-1} \left(\lambda_p - 1\right) + c_p \lambda_p T_a \varepsilon^{k-1} \left(\rho - 1\right)}.$$

Приведем эту формулу к виду

$$\eta_{t} = 1 - \frac{\lambda_{p} \rho^{k} - 1}{\varepsilon^{k-1} \left[\lambda_{p} - 1 + k \lambda_{p} \left(\rho - 1 \right) \right]}$$

с учетом того, что

$$\frac{c_p}{c_v} = k \quad \text{i} \quad \delta = \frac{v_b}{v_z} = \frac{v_a}{v_z} = \frac{v_a / v_c}{v_z / v_c} = \frac{\varepsilon}{\rho}.$$

8

Термический КПД обобщенного цикла увеличивается при росте степени сжатия ε , степени повышения давления λ_p , показателя адиабаты k и уменьшается при увеличении степени предварительного расширения ρ . Однако чем больше λ_p , тем больше q_1 и тем меньше удельная работа сжатия

$$\varphi_{\rm cm} = l_{\rm cm} / q_1 \, .$$

Работа теоретического цикла определяется по формуле

$$l_t = q_1 \eta_t$$

Отношение работы цикла к рабочему объему цилиндра (удельная работа) характеризует среднее давление цикла

$$p_t = l_t / v_n$$
.

Поскольку

$$q_{1} = q'_{1} + q''_{2} = c_{v} \left(T_{z'} - T_{c} \right) + c_{p} \left(T_{z} - T_{z'} \right) =$$
$$= c_{v} T_{a} \varepsilon^{k-1} \left[\lambda_{p} - 1 + k \lambda_{p} \left(\rho - 1 \right) \right]$$

И

$$\mathbf{v}_n = \mathbf{v}_a - \mathbf{v}_c = \mathbf{v}_a - \frac{\mathbf{v}_a}{\varepsilon} = \frac{\mathbf{v}_a}{\varepsilon} (\varepsilon - 1),$$

то

$$p_t = \frac{q_1 \eta_t}{v_n} = \frac{c_v T_a \varepsilon^{k-1} \left[\lambda_p k \left(p - 1 \right) \right] \varepsilon}{v_a \left(\varepsilon - 1 \right)} \eta_t$$

Так как $c_v = R / (k - 1)$ и $T_a / v_a = p_a / R$, выражение для среднего давления газа в обобщенном цикле будет иметь вид

$$p_{t} = \frac{p_{a}\varepsilon^{k}}{(k-1)(\varepsilon-1)} \Big[\lambda_{p} - 1 + k\lambda_{p}(\rho-1)\Big]\eta_{t}.$$

9

Наиболее эффективным способом увеличения среднего давления является повышение начального давления p_a .

Циклы с подводом теплоты при p = const или v = const являются частными случаями рассмотренного обобщенного цикла. При $\lambda_p = 1$ обобщенный цикл представляет собой цикл с изобарным подводом теплоты, а при $\rho = 1$ – цикл с изохорным подводом теплоты.

Цикл ДВС с турбонаддувом. Следует обратить особое внимание на то, что в данных циклах отвод теплоты осуществляется в изохорном процессе. При этом параметры газа в конце процесса расширения значительно превышают параметры окружающей среды. Термодинамический цикл с продолженным расширением может быть осуществлен в комплексной установке двигателя и турбонагнетателя, состоящего из газовой турбины и компрессора (рис. 2.2 и рис. 2.3). В газовой турбине происходит дальнейшее расширение газов, а полученная при этом энергия расходуется на привод нагнетателя для наддува двигателя. Циклы установки с продолженным расширением, переменным и постоянным давлением газов перед турбиной представлены соответственно на рис. 2.2 и 2.3, где b-f – продолженное расширение газа на лопатках турбины; f_0 – отвод теплоты при p = const; 0-a – адиабатное сжатие воздуха в нагнетателе.

Рис. 2.2. Цикл ДВС с турбонаддувом и переменным давлением газов перед турбиной

Рис. 2.3. Цикл ДВС с турбонаддувом и постоянным давлением газов перед турбиной

Термический КПД циклов соответственно

$$\eta_t = 1 - \frac{1}{\varepsilon_0^{k-1}} \cdot \frac{\rho \lambda^{\frac{1}{k}} - 1}{\lambda - 1 + k\lambda(\rho - 1)};$$

$$\eta_t = 1 - \frac{1}{\varepsilon_0^{k-1}} \cdot \frac{\lambda \rho^k - 1}{\lambda - 1 + k\lambda(\rho - 1)},$$

где ε_0 – общая степень сжатия.

Из сравнения выражений для КПД обобщенного цикла и цикла с продолженным расширением газов видно, что КПД последнего выше. Также это относится к циклу с продолженным расширением, когда давление перед турбиной поддерживается постоянным и кинетическая энергия отработавших газов не используется на лопатках турбины.

Задача

Для идеального цикла поршневого двигателя внутреннего сгорания со смешанным подводом теплоты (цикл Тринклера) определить параметры рабочего тела в характерных точках, термический КПД, количество отведенной и подведенной теплоты, работу сжатия, расширения и работу цикла. Начальные параметры рабочего тела $p_1 = 0,1$ МПа и $t_1 = 27$ °C, степень сжатия $\varepsilon = 12,7$, степень повышения давления $\lambda = 1,4$ и степень предварительного расширения $\rho = 1,6$. Данный цикл ДВС изображен в p-v- и T-s-координатах на рис. 2.6. Диаграммы цикла Дизеля и цикла Отто изображены на рис. 2.4 и 2.5.

Рис. 2.4. Цикл ДВС с подводом теплоты при постоянном давлении (цикл Дизеля)

Рис. 2.5. Цикл ДВС с подводом теплоты при постоянном объеме (цикл Отто)

Рис. 2.6. Цикл ДВС со смешанным подводом теплоты (цикл Тринклера)

Параметры точки 1.

ν₁ =
$$\frac{R_{\text{возд}}T_1}{p_1}$$
 = $\frac{287 \cdot (27 + 273)}{0,1 \cdot 10^6}$ = 0,86 м³/кг,
 p_1 = 0,1 MΠa, t_1 = 27 °C = 300 K,

где

$$R_{\text{возд}} = \frac{R}{\mu_{\text{возд}}} = \frac{8314}{28,9} = 287,68 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Параметры точки 2. Так как степень сжатия

$$\varepsilon = \frac{v_1}{v_2} = \frac{0,86}{0,0678} = 12,7,$$

то

$$v_2 = \frac{v_1}{\varepsilon} = \frac{0.86}{12.7} = 0.0678 \frac{M^3}{\kappa\Gamma},$$

температура в конце адиабатного сжатия

$$T_2 = T_1 \left(\frac{v_1}{v_2}\right)^{k-1} = 300(12,7)^{1,4-1} = 829 \text{ K},$$

давление в конце адиабатного сжатия

$$p_2 = \frac{RT_2}{v_2} = \frac{287,68 \cdot 829}{0,0678 \cdot 10^6} = 3,5 \text{ MIIa}.$$

Параметры точки 3.

Из соотношения параметров в изохорном процессе получаем

$$v_3 = 0,0678 \frac{M^3}{\kappa \Gamma},$$

13

$$p_3 = p_2 \lambda = 3, 5 \cdot 1, 4 = 4, 9$$
 МПа,
 $T_3 = T_2 \lambda = 829 \cdot 1, 4 = 1160, 6$ К.

Параметры точки 4.

Из соотношения параметров в изобарном процессе получаем

$$p_4 = 4,9 \text{ MIIa},$$

 $v_4 = v_3 \rho = 0,0678 \cdot 1,6 = 0,1085 \frac{\text{M}^3}{\text{KG}},$

$$T_4 = T_3 \rho = 1160, 6 \cdot 1, 6 = 1856 \text{ K}.$$

Параметры точки 5.

$$v_5 = v_1 = 0,86 \frac{M^3}{K\Gamma};$$

давление в конце адиабатного расширения

$$\frac{p_4}{p_5} = \left(\frac{v_4}{v_5}\right)^k = \left(\frac{v_1}{v_4}\right)^k = \left(\frac{0.86}{0.1085}\right)^{1.4} = 18,142;$$
$$p_5 = \frac{4.9}{18,142} = 0,27 \text{ MIIa.}$$

Температура в конце адиабатного расширения

$$T_5 = T_1 \left(\frac{p_5}{p_1}\right) = 300 \left(\frac{0,27}{0,1}\right) = 810$$
 K.

Удельная работа сжатия

$$\begin{split} l_{1-2} &= \frac{1}{k-1} - p_2 \cdot \mathbf{v}_2 = \\ &= \frac{1 \cdot 10^6}{0,4} \big(0, 1 \cdot 0, 86 - 3, 5 \cdot 0, 0678 \big) = -378 \; \frac{\kappa \Xi \kappa}{\kappa \Gamma} \,. \end{split}$$

Удельная работа расширения

$$l_{3-4-5} = \frac{1}{k-1} - (p_4 v_4 - p_5 v_5) + p_3 (v_4 - v_3) =$$
$$= \frac{1 \cdot 10^6}{0,4} (4, 9 \cdot 0, 1085 - 0, 27 \cdot 0, 86) +$$
$$+ 4, 9 \cdot 10^6 (0, 1085 - 0, 0678) = 948 \frac{\kappa \mu \kappa}{\kappa \Gamma}.$$

Удельная работа цикла

$$l_t = l_{3-4-5} + l_{1-2} = 948 - 380 = 568 \frac{\kappa \square \pi}{\kappa \Gamma}$$

Удельное количество подведенной теплоты

$$q_{1} = q_{1}' + q_{1}'' = c_{v} (T_{3} - T_{2}) + c_{p} (T_{4} - T_{3}) =$$

= 0,72(1160 - 829) + 1,01(1856 - 1160,6) =
= 238,32 + 702,354 = 941 \frac{\kappa \square \pi}{\kappa \Gamma}.

Удельное количество отведенной теплоты

$$q_2 = c_v (T_5 - T_1) = 0.72 (810 - 300) = 367.2 \frac{\kappa \Box \kappa}{\kappa \Gamma}.$$

Удельное количество теплоты, полезно использованной в цикле:

$$q_t = q_1 + q_2 = 941 - 366 = 575,8 \frac{\kappa \mu \pi}{\kappa \Gamma}.$$

Термический КПД цикла

$$\eta_t = \frac{l_t}{q_1} = \frac{568}{941} = 0,602.$$

Термический КПД цикла ДВС со смешанным подводом теплоты (цикл Тринклера)

$$\eta_t = 1 - \frac{\lambda \rho^k - 1}{\epsilon^{k-1} \left[(\lambda - 1) + k\lambda (\rho - 1) \right]} = 1 - \frac{1, 4 \cdot 1, 6^{1,4} - 1}{12, 7^{0,4} \left[(1, 4 - 1) + 1, 4 \cdot 1, 4 (1, 6 - 1) \right]} = 0, 61.$$

2.2. Расчет циклов газотурбинных установок

Принцип действия. Воздух сжимается в турбокомпрессоре, который приводится в движение газовой турбиной. Компрессор и турбина расположены на одном валу, который приводит в действие и топливный насос. Сжатый воздух попадает в камеру сгорания, куда топливным насосом через специальные форсунки впрыскивается топливо. Образующиеся при горении газы устремляются к выходу и расширяются в каналах соплового аппарата. Затем газовый поток направляется на лопатки турбины, где кинетическая энергия потока преобразуется в механическую энергию вращения вала турбины. Далее газы через выхлопной патрубок направляются в атмосферу. На рис. 2.7 изображен теоретический цикл газотурбиной установки (ГТУ), работающей с подводом теплоты при постоянном давлении. Цикл состоит из двух адиабат и двух изобар:

1-2 – процесс адиабатного сжатия газа в турбокомпрессоре;

2-3 – изобарный процесс подвода теплоты;

3-4 - адиабатное расширение рабочего тела в газовой турбине;

4-1 – изобарный процесс отвода теплоты.

Рис. 2.7. Цикл ГТУ с подводом теплоты при p = constв p-v- и T-s-координатах

Параметрами цикла являются:

 $\beta = p_2/p_1$ – степень повышения давления при адиабатном сжатии *k* в компрессоре;

 $\rho = v_3 / v_2$ – степень предварительного расширения.

Термический КПД установки в рассматриваемом цикле

$$\eta_t = 1 - \frac{1}{\beta^{\frac{k-1}{k}}}.$$

Термический КПД ГТУ с подводом теплоты при постоянном давлении возрастает с увеличением степени сжатия β и показателя адиабаты *k*.

Термический КПД ГТУ с подводом теплоты при p = const возрастает при регенерации, ступенчатом сжатии воздуха в компрессо-

ре и ступенчатом сжигании топлива. При регенерации теплота отработавших газов используется при подогреве воздуха, поступающего в камеру сгорания. В результате экономичность ГТУ повышается в связи с тем, что в камере сгорания для достижения заданной температуры перед входом в газовую турбину газу сообщается меньшее количество теплоты.

Задача

Исходные данные:

Цикл ГТУ с подводом теплоты при p = const.Рабочее тело – воздух; начальные параметры рабочего тела:

$$p_1 = 0,12$$
 MПa;

$$T_1 = 300 \text{ K};$$

степень увеличения давления в компрессоре при политропном сжатии $\beta = p_2 / p_1 = 7;$

показатель адиабаты k = 1,4;

показатель политропы при сжатии и расширении соответственно $n_1 = 1,37$ $n_2 = 1,28$.

Температура газов перед соплами турбины в точке *3* не должна превышать 1000 К.

Определить:

- параметры всех характерных точек цикла (p, T, v);
- удельную работу расширения, сжатия, работу цикла;
- удельное количество подведенной и отведенной теплоты;
- термический КПД цикла ГТУ;
- термический КПД цикла Карно по условиям задачи;
- среднеинтегральные температуры подвода и отвода теплоты.
 Определяем параметры рабочего тела в характерных точках цикла.

Точка 1.

$$p_1 = 0,12$$
 MIIa $T_1 = 300$ K.

Удельный объем воздуха определяем из уравнения состояния:

$$\vartheta_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 300}{0.12 \cdot 10^6} = 0.7175 \text{ m}^3/\text{kg},$$

где $R = 287 \, \text{Дж}/(\text{кг} \cdot \text{K})$ – газовая постоянная воздуха.

Точка 2. Давление воздуха

$$p_2 = p_1 \beta = 0, 12 \cdot 7 = 0,84$$
 MIIa.

Температура рабочего тела

$$T_2 = T(\beta)^{\frac{n_1-1}{n_1}} = 300 \cdot 7^{\frac{0.37}{1.37}} = 507 \text{ K}.$$

Удельный объем

$$\vartheta_2 = \frac{RT_2}{p_2} = \frac{287 \cdot 507}{0.84 \cdot 10^6} = 0.1732 \text{ m}^3/\text{kg}.$$

Точка 3. Давление рабочего тела

$$p_3 = p_2 = 0,84 \text{ MII}a.$$

Температура рабочего тела

$$T_3 = 1000$$
 K.

Удельный объем

$$\vartheta_3 = \frac{RT_3}{p_3} = \frac{287 \cdot 1000}{0.84 \cdot 10^6} = 0.3417 \text{ m}^3/\text{kg}.$$

19

Точка 4. Давление рабочего тела

$$p_4 = p_1 = 0,12$$
 MIIa.

Температура рабочего тела

$$T_4 = T_3 \left(\frac{p_4}{p_3}\right)^{\frac{n_2-1}{n_2}} = 1000 \left(\frac{0.12}{0.84}\right)^{\frac{0.28}{1.28}} = 653$$
 K.

Удельный объем

$$9_4 = \frac{RT_4}{p_4} = \frac{287 \cdot 653}{0,12 \cdot 10^6} = 1,562 \text{ м}^3/\text{кг.}$$

Теплоемкость политропного процесса *1–2*

$$c_{1-2} = c_v \frac{n-k}{n-1} = 0,718 \cdot \frac{1,37-1,4}{1,37-1} = -0,0582$$
 кДж/(кг · К),

где k = 1, 4 – показатель адиабаты воздуха.

Изобарная теплоемкость воздуха

$$c_p = \frac{kR}{k-1} = \frac{1,4 \cdot 0,287}{1,4-1} = 1,005$$
 кДж/(кг · К).

Изохорная теплоемкость воздуха

$$c_v = c_p - R = 1,005 - 0,287 = 0,718$$
 кДж/(кг · К).

Теплоемкость политропного процесса 3-4

$$c_{3-4} = c_v \frac{n-k}{n-1} = 0,718 \cdot \frac{1,28-1,4}{1,28-1} = -0,3077 \, \text{кДж/(кг \cdot K)}.$$

20

Удельное количество подведенной теплоты

$$q_1 = c_p (T_3 - T_2) + c_{3-4} (T_4 - T_3) =$$

= 1,005(1000 - 507) - 0,3077(653 - 1000) = 602,2 кДж/кг

Удельное количество отведенной теплоты

$$q_2 = c_p \left(T_4 - T_1 \right) + c_{1-2} \left(T_1 - T_2 \right) =$$

= 1,005(653 - 300) - 0,0582(300 - 507) = 367,5 кДж/кг.

Удельная работа сжатия

$$\begin{split} l_{cw} &= p_1 \left(\vartheta_4 - \vartheta_1 \right) + \frac{1}{n_1 - 1} \left[p_2 \vartheta_2 - p_1 \vartheta_1 \right] = \\ &= 0,12 \cdot 10^6 \left(1,563 - 0,7175 \right) + \frac{1}{1,37 - 1} \times \\ \times \left[0,84 \cdot 10^6 \cdot 0,1734 - 0,12 \cdot 10^6 \cdot 0,7175 \right] = 262,4 \text{ KДж/KГ.} \end{split}$$

Удельная работа расширения

$$\begin{split} l_{\text{pacm}} &= p_2 \left(\vartheta_3 - \vartheta_2 \right) + \frac{1}{n_2 - 1} \big[p_3 \vartheta_3 - p_4 \vartheta_4 \big] = \\ &= 0,84 \cdot 10^6 \left(0,3417 - 0,1734 \right) + \frac{1}{1,28 - 1} \times \\ &\times \Big[0,84 \cdot 10^6 \cdot 0,3417 - 0,12 \cdot 10^6 \cdot 1,563 \Big] = 496,6 \text{ кДж/кг.} \end{split}$$

Работа цикла

$$l_0 = l_{\text{расш}} - l_{\text{сж}} = 496, 6 - 262, 4 = 234, 2$$
 кДж/кг.

Термический КПД цикла ГТУ

$$\eta_t = \frac{l_0}{q_1} = \frac{234, 2}{602, 2} = 0,3889.$$

Термический КПД цикла Карно равен:

$$\eta_{\rm K} = \frac{T_3 - T_1}{T_3} = \frac{1000 - 300}{1000} = 0,70.$$

Среднеинтегральная температура подвода теплоты

$$T_{\text{uH1}} = \frac{T_3 - T_2}{\ln \frac{T_3}{T_2}} = \frac{1000 - 507}{\ln \frac{1000}{507}} = 726 \text{ K.}$$

Среднеинтегральная температура отвода теплоты

$$T_{\rm MH2} = \frac{T_4 - T_1}{\ln \frac{T_4}{T_1}} = \frac{653 - 300}{\ln \frac{653}{300}} = 454 \text{ K}.$$

3. ТЕРМОГАЗОДИНАМИКА ПОТОКА

3.1. Истечение реального газа из сопел

Процессы истечения газов и паров из каналов различной формы встречаются при проектировании компрессоров, турбин, двигателей внутреннего сгорания, реактивных двигателей, холодильных установок и других технологических устройств.

При решении задач на истечение всегда в первую очередь необходимо определять режим: дозвуковой (подкритический) или сверхзвуковой (надкритический). Это можно сделать путем сравнения отношения давлений на выходе и входе в сопло $\frac{P_2}{2}$ с критиче p_1 ским отношением давлений $\left(\frac{p_2}{p_1}\right)_{rp}$.

Значение критического отношения давлений зависит только от показателя алиабаты k.

$$\left(\frac{p_2}{p_1}\right)_{\rm KP} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}.$$

Для перегретого пара это отношение равно 0,546; для сухого насышенного 0.577.

3.2. Методика расчета сужающегося сопла

В ряде практических задач роль сужающегося сопла часто играют отверстия в стенках различных резервуаров. Для уменьшения необратимых потерь канал сужающегося сопла выполняют в виде плавно меняющегося по длине сечения, внутреннюю поверхность сопла тщательно обрабатывают (рис. 3.1).

Рис. 3.1. Схема сужающегося сопла

Постановка задачи состоит в следующем: требуется определить теоретическую скорость истечения водяного пара из сужающегося сопла ω , м/с, в среду с давлением p_2 , МПа, и расход пара через сопло M, кг/с, если известны:

- абсолютное давление пара на входе в сопло *p*₁, МПа;

– температура пара на входе в сопло t_1 , °C;

- площадь выходного сечения *f*, м².

Определим режим истечения пара из сужающегося сопла. В зависимости от режима истечения расчет будет выполняться по разным формулам, представленным в таблице (табл. 3.1).

Таблица 3.1

$\frac{p_2}{p_1} > \left(\frac{p_2}{p_1}\right)_{\rm kp}$ – дозвуковой или	$\frac{p_2}{p_1} \le \left(\frac{p_2}{p_1}\right)_{\text{кр}}$ – сверхзвуковой
подкритический режим	или надкритический режим
Теоретическая скорость истечения пара из сопла	
$\omega = \sqrt{2000(h_1 - h_2)}$, м/с	$\omega_{\mathrm{kp}} = \sqrt{2000 \left(h_{\mathrm{l}} - h_{\mathrm{kp}}\right)}$, м/с
Расход пара через сопло	
$M = \frac{f\omega}{v_2}$, кг/с	$M_{\rm max} = rac{f_{\rm \kappa p} \omega_{\rm \kappa p}}{{ m v}_{\rm \kappa p}}$, кг/с

Для сверхзвукового режима истечения необходимо найти значение критического давления *p*_{кр}. Найдем его из следующего соотношения:

$$p_{\rm kp} = p_1 \left(\frac{p_2}{p_1}\right)_{\rm kp}.\tag{3.1}$$

Построим процесс истечения реального газа (водяного пара) из сужающегося сопла в *h*-*s*-диаграмме (рис. 3.2).

Основные формулы

Рис. 3.2. Процесс адиабатного расширения водяного пара в сужающемся сопле: *а* – дозвуковой режим истечения; *б* – сверхзвуковой режим истечения

По *h*–*s*-диаграмме для начальных параметров p_1 и t_1 находим энтальнию в точке *l*: h_1 , кДж/кг.

Затем по адиабате опускаемся до пересечения с изобарой p_2 или $p_{\rm kp}$ (в зависимости от режима истечения) и определяем энтальпию соответственно h_2 или $h_{\rm kp}$. Также по построению в точке 2 или в критической точке определяем удельный объем пара v_2 или $v_{\rm kp}$, $M^3/k\Gamma$.

Скорость истечения водяного пара из сужающегося сопла и расход пара определяем по формулам из табл. 3.1.

3.3. Методика расчета сопла Лаваля

Комбинированное сопло, состоящее последовательно из сужающейся, а затем расширяющейся части, называется соплом Лаваля (рис. 3.3). Данное сопло служит для получения сверхзвукового потока. В наименьшем сечении сопла Лаваля течение критическое, поэтому его часто называют критическим сечением сопла Лаваля.

Сопло Лаваля позволяет значительно увеличить скорость истечения пара по сравнению с сужающимся соплом даже при учете реального режима истечения пара (с учетом трения).

Рис. 3.3. Схема сопла Лаваля

Постановка задачи состоит в следующем: требуется определить теоретическую скорость истечения водяного пара из сопла Лаваля ω , м/с, в среду с давлением p_2 , МПа, если абсолютное давление пара на входе в сопло p_1 , МПа, температура пара на входе в сопло t_1 , °С. Также следует определить действительную скорость истечения пара из сопла Лаваля $\omega_{2,\pi}$, м/с, и определить его основные размеры (при действительном истечении), если расход пара M, кг/с, скоростной коэффициент сопла φ , а угол конусности расширяющейся части сопла α .

Для начала рассмотрим теоретический процесс истечения из сопла Лаваля. В h-s-диаграмме он будет выглядеть точно так же, как и сверхзвуковой режим истечения из сужающегося сопла (см. рис. 3.2, δ).

Теоретическую скорость истечения из сопла Лаваля определим по формуле для дозвукового режима (см. табл. 3.1):

$$\omega = \sqrt{2000(h_1 - h_2)}$$
, m/c, (3.2)

где h_1 и h_2 определим по построению из h-s-диаграммы.

Теоретическую скорость в критическом (минимальном) сечении сопла Лаваля определим по формуле для сверхзвукового режима истечения (см. табл. 3.1):

$$\omega_{\rm kp} = \sqrt{2000(h_{\rm l} - h_{\rm kp})}$$
, m/c. (3.3)

Для того чтобы найти критическую точку на адиабате процесса истечения, а также значения $h_{\rm kp}$, критическое давление $p_{\rm kp}$ найдем по формуле (3.1).

Теперь рассчитаем скорости истечения в минимальном и выходном сечении сопла Лаваля при действительном процессе истечения пара (с учетом трения).

Так как в результате трения выделяется теплота, а следовательно, увеличиваются энтальпия и энтропия, то действительная конечная точка процесса (точка 2д) будет находиться правее и выше точки 2 на h-s-диаграмме (рис. 3.4).

Рис. 3.4. Теоретический и действительный процессы истечения водяного пара в сопле Лаваля

Действительный процесс истечения водяного пара изображен на рис. 3.4 штриховой прямой *1*–2д. Штриховыми линиями изображаются необратимые процессы.

Действительную скорость истечения на выходе из сопла Лаваля найдем по формуле

$$\omega_{2\pi} = \varphi \omega \,, \tag{3.4}$$

где ф – скоростной коэффициент сопла Лаваля.

Для нахождения положения точки 2д на h-s-диаграмме значение энтальпии h_{2d} найдем с помощью коэффициента потери энергии в сопле.

Коэффициент потери энергии в сопле

$$\zeta = 1 - \varphi^2 = \frac{h_{2,\pi} - h_2}{h_1 - h_2}.$$
(3.5)

Тогда энтальпия пара в конце действительного процесса истечения $h_{2\mathrm{g}}$

$$h_{2,\mathrm{I}} = \zeta (h_{\mathrm{I}} - h_{2}) + h_{2}$$
, кДж/кг. (3.6)

Зная энтальпию h_{2a} и давление среды p_2 , используя *h*–*s*-диаграмму, можем определить удельный объем пара v_{2a} , $M^3/$ кг.

Действительную скорость истечения пара в критическом сечении сопла Лаваля найдем по формуле

$$\omega_{\rm kp,g} = \varphi \omega_{\rm kp}, \, {\rm M/c}. \tag{3.7}$$

Значение энтальпии в критическом сечении сопла Лаваля $h_{\text{кр.д}}$ найдем по построению. Зная энтальпию $h_{\text{кр.д}}$ и критическое давление среды $p_{\text{кр}}$, используя h–*s*-диаграмму, можем определить удельный объем пара $v_{\text{кр.д.}}$, $M^3/$ кг.

Определим основные размеры сопла Лаваля (рис. 3.5).

Рис. 3.5. Основные размеры сопла Лаваля

Минимальное сечение найдем по формуле

$$f_{\min} = \frac{M v_{\kappa p, \mathcal{A}}}{\omega_{\kappa p, \mathcal{A}}}, \, \mathrm{M}^2.$$
(3.8)

Диаметр минимального сечения сопла Лаваля

$$d_{\min} = \sqrt{\frac{4f_{\min}}{\pi}}, \,\mathrm{M}.$$
(3.9)

Площадь выходного сечения

$$f_{\max} = \frac{M v_{2\pi}}{\omega_{2\pi}}, \, \mathrm{m}^2.$$
 (3.10)

Диаметр выходного сечения сопла Лаваля

$$d = \sqrt{\frac{4f_{\text{max}}}{\pi}}, \text{ M.}$$
(3.11)

Длина расширяющейся части сопла Лаваля

$$l = \frac{d - d_{\min}}{2 \operatorname{tg} \frac{\alpha}{2}}, \,\mathrm{M}.$$
(3.12)

4. ЦИКЛЫ ПАРОТУРБИННЫХ УСТАНОВОК

Преобразование теплоты в механическую работу, а затем в электрическую энергию наиболее часто осуществляется в паросиловых (паротурбинных) установках.

В качестве рабочего тела в паросиловых установках (ПСУ) используется вода, которая в котле превращается в насыщенный, а затем в пароперегревателе – в перегретый пар. Из пароперегревателя пар поступает в турбину, расширяясь на лопатках которой производит полезную работу (на одном валу с турбиной устанавливают электрогенератор). Отработавший пар поступает в конденсатор, где становится жидкостью (конденсатом). Конденсат при помощи питательного насоса снова возвращается в котел.

4.1. Расчет цикла Ренкина

Простейшая схема паросиловой установки изображена на рис. 4.1.

Рис. 4.1. Паротурбинная установка: I – котел; II – пароперегреватель; III – паровая турбина; IV – электрогенератор; V – конденсатор; VI – насос

Реальные ПСУ работают по циклу Ренкина (рис. 4.2).

Рис. 4.2. Цикл Ренкина

Так как величина работы насоса в ПСУ по сравнению с работой паровой турбины очень мала, то ею можно пренебречь. Тогда

$$h_4 \approx h_3 \approx h_2'$$

Термический КПД цикла Ренкина

$$\eta_t = \frac{l_{\rm u}}{q_1} = \frac{q_1 - q_2}{q_1} = \frac{h_1 - h_2}{h_1 - h_2'}.$$
(4.1)

Постановка задачи состоит в следующем: требуется определить термический КПД цикла Ренкина, удельный расход пара и конечную степень сухости пара в конце процесса адиабатного расширения на лопатках турбины, если паротурбинная установка работает с начальными параметрами пара p_1 , МПа, t_1 , °С, и давлением в конденсаторе p_2 , МПа.

Для начала рассмотрим процесс расширения пара на лопатках турбины в *h*-*s*-диаграмме (рис. 4.3).

Рис. 4.3. Процесс адиабатного расширения пара на лопатках турбины

По построению для начальных параметров p_1 и t_1 находим энтальпию h_1 , кДж/кг.

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой p_2 и находим энтальпию в точке 2: h_2 , кДж/кг.

Энтальпия h'_2 определяется по таблицам воды и водяного пара (по давлению в конденсаторе p_2).

Подставляем полученные значения в формулу (4.1) и определяем термический КПД цикла Ренкина.

Удельный расход пара

$$d = \frac{3600}{h_1 - h_2}, \, \kappa \Gamma / (\kappa B \tau \cdot \Psi).$$
(4.2)

Конечная степень сухости может быть определена по построению из *h*–*s*-диаграммы либо расчетным путем:

$$x_2 = \frac{h_2 - h_2'}{h_2'' - h_2'},\tag{4.3}$$

где h'_2 и h''_2 определяются по таблицам воды и водяного пара (по давлению в конденсаторе p_2).

4.2. Расчет цикла Ренкина со вторичным (промежуточным) перегревом пара

Принципиальная схема паросиловой установки со вторичным перегревом пара представлена на рис. 4.4. В таких установках паровая турбина представляет собой два цилиндра: цилиндр высокого давления и цилиндр низкого давления. Вторичный или промежуточный перегрев пара вводится после цилиндра высокого давления.

Рис. 4.4. Паротурбинная установка со вторичным пароперегревателем: I – котел; II – пароперегреватель; III – паровая турбина; IV – электрогенератор; V – конденсатор; VI – насос; VII – вторичный пароперегреватель

Промежуточный перегрев позволяет повысить степень сухости пара, что приводит к увеличению КПД ПГУ установки и повышению долговечности лопаток турбины, так как чем больше степень сухости пара, тем меньше вероятность возникновения коррозии на лопатках турбины.

Постановка задачи состоит в следующем: требуется определить термический КПД цикла Ренкина после ввода промежуточного перегрева пара при давлении p', МПа, до температуры t', °С. Начальные параметры пара перед турбиной p_1 , МПа; t_1 , °С, и давление в конденсаторе p_2 , МПа. Также необходимо определить степень сухости в конце процесса расширения пара на лопатках цилиндра низкого давления турбины.

КПД цикла с вторичным перегревом пара можно определить по формуле

$$\eta_{t,\text{nep}} = \frac{(h_1 - h_a) + (h_b - h_2)}{(h_1 - h_2') + (h_b - h_a)}.$$
(4.4)

Построим процесс расширения пара на лопатках турбины в *h*-*s*-диаграмме (рис. 4.5).

Рис. 4.5. Процесс адиабатного расширения пара на лопатках турбины при наличии вторичного перегрева пара

По построению для начальных параметров p_1 и t_1 находим энтальпию: h_1 , кДж/кг.

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой p' и находим энтальпию в точке $a: h_a$, кДж/кг.

Далее по изобаре p' поднимаемся до пересечения с изотермой t' и получаем энтальпию в точке $b: h_b$, кДж/кг.

Затем по адиабате опускаемся до пересечения с изобарой p_2 и находим энтальпию в точке 2: h_2 , кДж/кг.

Энтальпия h'_2 определяется по таблицам воды и водяного пара (по давлению в конденсаторе p_2).

В результате по формуле (4.4) находим термический КПД цикла Ренкина с промежуточным перегревом пара.

Конечная степень сухости может быть определена по построению из *h*–*s*-диаграммы либо расчетным путем по формуле (4.3).

4.3. Расчет регенеративного цикл паротурбинной установки

Принципиальная схема паротурбинной установки с регенерацией представлена на рис. 4.6.

Рис. 4.6. Паротурбинная установка с регенерацией: I – котел; II – пароперегреватель; III – паровая турбина; IV – электрогенератор; V – конденсатор; VI – насос; VII – регенеративный теплообменник

Некоторая часть пара отбирается из турбины и конденсируется в специальных подогревателях (регенеративных теплообменниках), где он нагревает питательную воду, поступающую в паровой котел.

Регенеративный цикл является эффективным способом повышения КПД паротурбинных установок, увеличивая КПД цикла в среднем на 10–12 % по сравнению с циклом Ренкина без регенерации.

Постановка задачи состоит в следующем: требуется определить термический КПД цикла и удельный расход пара, если для подогрева питательной воды из турбины отбирался пар при давлении $p_{\text{отб}}$, МПа. Начальные параметры пара перед турбиной: p_1 , МПа; t_1 , °С, и давление в конденсаторе p_2 , МПа.

Термический КПД паросиловой установки с регенеративным теплообменником определяется следующим образом:
$$\eta_{t,\text{per}} = \frac{h_1 - h_2 - \alpha \left(h_{\text{orf}} - h_2\right)}{h_1 - h'_{\text{orf}}}.$$
(4.5)

Построим процесс расширения пара на лопатках турбины в *h*-*s*-диаграмме (рис. 4.7).

Рис. 4.7. Процессы расширения в турбине в регенеративном цикле

По построению для начальных параметров p_1 и t_1 находим энтальпию h_1 , кДж/кг.

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой $p_{\text{отб}}$ и находим энтальпию в точке в точке 21: $h_{\text{отб}}$, кДж/кг. Опускаясь дальше до пересечения с изобарой p_2 , найдем энтальпию в точке 2: h_2 , кДж/кг.

Количество отобранного пара

$$\alpha = \frac{h'_{\rm or6} - h'_2}{h_{\rm or6} - h'_2}, \qquad (4.6)$$

где h'_2 и $h'_{\text{отб}}$ определяются из таблиц воды и водяного пара по давлению p_2 и $p_{\text{отб}}$ соответственно.

Термический КПД регенеративного цикла ПСУ определяется по формуле (4.5).

Удельный расход пара в регенеративном цикле

$$d_{\rm per} = \frac{3600}{h_1 - h_2 - \alpha (h_{\rm or6} - h_2)}, \, \kappa \Gamma / (\kappa B {\rm T} \cdot {\rm y}).$$
(4.7)

5. ЦИКЛЫ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

На атомных электростанциях (АЭС) источником энергии служит ядерное горючее (изотопы урана 235 и 238 или плутоний). Процесс деления ядер сопровождается выделением тепла, которое отводится из реактора теплоносителем, и используется для выработки электрической энергии. В результате деления ядра изотопа урана ²³⁵U выделяется около 200 МэВ (мегаэлектронвольт) энергии. При расщеплении 1 кг ²³⁵U выделяется около 80.10¹² Дж теплоты.

В качестве теплоносителя используются вода, различные газы (углекислый газ, гелий, азот), жидкие металлы (калий, натрий) и органические жидкости (углеводороды, дифенил, изопропил и т. д.).

Первая в мире АЭС в Обнинске (СССР) мощностью 5 МВт была запущена 27 июня 1954 г. До появления промышленных реакторов первые ядерные установки были разработаны для подводного флота.

Тепловые схемы АЭС могут быть одно-, двух- и трехконтурными (рис. 5.1).

В одноконтурной схеме теплоноситель (вода) выполняет функции рабочего тела паросилового цикла (рис. 5.1, *a*). Рабочее тело получает теплоту непосредственно в реакторе I, омывая ТВЭЛы, и превращается в пар. При этом рабочее тело загрязняется осколками ядерного деления и становится радиоактивным. Из реактора радиоактивный пар поступает в турбину II, где, расширяясь, с помощью электрогенератора III производит полезную работу. Отработанный пар после турбины поступает в конденсатор IV. Конденсат с помощью насоса V снова попадает в реактор. Несмотря на внешнюю простоту одноконтурной схемы, из-за радиоактивного рабочего тела эксплуатация и ремонт таких АЭС очень затруднительны. По одноконтурной схеме работают АЭС с реакторами типа РБМК-1000 и РБМК-1500.

в

Рис. 5.1. Схемы АЭС: *a* – одноконтурная; *б* – двухконтурная; *в* – трехконтурная; I – реактор; II – турбина; III – электрогенератор; IV – конденсатор; V – насос; VI – парогенератор; VII – теплообменник

Если контуры теплоносителя и рабочего тела выполнены раздельно, то такая схема называется двухконтурной (рис. 5.1, δ). Насосом V, включенным в первый контур, теплоноситель прокачивается последовательно через реактор I и парогенератор VI. В парогенераторе VI нагретый теплоноситель отдает теплоту рабочему телу второго контура, превращая его в пар. Пар, расширяясь в турбине II, приводит во вращение электрогенератор III. После турбины пар конденсируется и из конденсатора IV насосом V, включенным во второй контур, вновь попадает в парогенератор. В качестве теплоносителя в первичном контуре используются вода, газы и органические вещества.

Обычно второй контур установки отделен от первого специальной биологической защитой и не является радиоактивным.

По двухконтурной схеме работают АЭС с реакторами типа ВВЭР-440, ВВЭР-1000 и ВВЭР-1200 (реакторы ВВЭР-1200 будут использованы при строительстве первой Белорусской АЭС с запланированной мощностью 2400 МВт возле г. Островец Гродненской области, схема которой представлена на рис. 5.2).

Рис. 5.2. Схема Белорусской АЭС

Иногда в качестве теплоносителя в первом контуре используют жидкие металлы (калий, натрий), которые позволяют увеличить

температуру поступающего в турбину рабочего тела, а следовательно, и термический КПД цикла. Однако при контакте с водой и кислородом они становятся взрывоопасными. Во избежание этого при применении жидких металлов в качестве теплоносителя используют трехконтурную тепловую схему (рис. 5.1, *в*).

В трехконтурной схеме между первым контуром с радиоактивным жидким металлическим теплоносителем (калием или натрием) и третьим контуром рабочего тела (вода и водяной пар) паросилового цикла включают второй промежуточный контур, в котором циркулирует нерадиоактивный натрий или натриево-калиевый сплав. Такая предосторожность необходима для того, чтобы в случае нарушения герметичности первого контура не произошло контакта радиоактивного калия или натрия с водой.

Таким образом, в трехконтурной атомной энергетической установке радиоактивен только первый контур, второй и третий контуры установки не радиоактивны.

По трехконтурной схеме работают АЭС с реакторами типа БН-350 и БН-600.

Увеличение числа контуров связано с появлением дополнительных потерь в цикле и соответственно уменьшением КПД АЭС. Действительный КПД современных атомных станций составляет порядка 17–37 %.

При определенных упрощениях цикл атомной энергетической установки можно свести к циклу Ренкина. Поэтому расчет основных характеристик циклов АЭС можно производить по формулам, представленным выше для циклов паросиловых установок.

6. ЦИКЛЫ ХОЛОДИЛЬНЫХ УСТАНОВОК

Для расчета теоретического рабочего цикла паровой холодильной компрессионной машины необходимо знать следующие температуры: кипения холодильного агента в испарителе t_0 , конденсации t и переохлаждения жидкости перед регулирующим вентилем $t_{п}$. Эти температуры устанавливают в зависимости от температуры охлаждаемого помещения и температуры внешней среды (охлаждающей воды или воздуха). Температура кипения t_0 при непосредственном охлаждении холодильным агентом бывает на 8–10 °С ниже температуры воздуха охлаждаемых камер. При охлаждении промежуточным теплоносителем (рассолом) температура t_0 должна быть на 5–7 °С ниже температуры воздуха камер. Температура конденсации t должна быть на 8–10 °С выше температуры воды, поступающей на конденсатор, температура переохлаждения t_{Π} на 3–4 °С выше температуры поступающей воды.

Наметив основные температуры, можно построить теоретический цикл и рассчитать его, определить теоретическую холодопроизводительность 1 кг холодильного агента, затрату работы в компрессоре и другие связанные с ними величины.

На рис. 6.1 представлена схема паровой холодильной компрессионной машины.

Рис. 6.1. Схема холодильной компрессионной машины: *I* – компрессор; *2* – конденсатор; *3* – дроссельный вентиль; *4* – переохладитель; *5* – испаритель

Необходимо обратить внимание на процесс переохлаждения, осуществляемый в специальном аппарате – переохладителе. В результате переохлаждения содержание теплоты в жидком хладагенте

уменьшается, что соответствует увеличению холодопроизводительности, так как снижается бесполезное парообразование в процессе дросселирования.

Для построения теоретического рабочего цикла паровой холодильной компрессионной машины используются термодинамические диаграммы. В практических расчетах используются T—s- и p—h-диаграммы, которые построены для наиболее широко применяемых хладагентов. На рис. 6.2 и 6.3 осуществлено построение теоретических рабочих циклов паровой холодильной компрессионной машины. Циклы включают следующие термодинамические процессы:

1–2 – адиабатное сжатие хладагента в компрессоре (в области перегретого пара);

2-2' – изобарный процесс охлаждения перегретого пара при выходе из компрессора до температуры конденсации $T_{\text{кон}}$;

2'-3' – изобарно-изотермический процесс конденсации хладагента в конденсаторе;

3'-3 – переохлаждение хладагента по отношению к температуре конденсации $T_{\text{кон}}$;

3-4 – изоэнтальпийный процесс дросселирования, протекающий без отдачи внешней работы во внешнюю среду;

4–1 – изобарно-изотермический процесс испарения (кипения) хладагента в испарителе холодильной машины.

Рис. 6.2. Теоретический цикл паровой холодильной компрессионной машины в *T*-*s*-координатах

Рис. 6.3. Теоретический цикл паровой холодильной компрессионной машины в *p*-*h*-координатах

Необходимо обратить внимание на отличительную особенность *p*-*h*-диаграммы, на которой основные расчетные величины измеряются отрезками прямых (Δh) на оси абсцисс (*h*).

Задача

Решить задачу в следующей постановке. Рассчитать компрессионную холодильную установку при следующих исходных данных:

- хладагент;

- холодопроизводительность установки Q₀, кВт;

– температура испарения хладагента t_0 , °С;

- температура конденсации t_{κ} , °С;
- переохлаждение конденсата Δt_{n} °C.

При расчете принять:

– удельную теплоемкость воды c = 4,19 кДж/(кг·К), рассола $c_p = 5,0$ кДж/(кг·К);

– перепад температур воды на входе и выходе из конденсатора $\Delta t_{\rm B} = 10$ °C, рассола на входе и выходе из испарителя $\Delta t_{\rm p} = 5$ °C. Определить:

– параметры хладагента (p, t, h) в характерных точках цикла, удельный объем пара, всасываемого компрессором, удельную массовую и объемную холодопроизводительности q_0 , q_y ;

– удельную работу сжатия в компрессоре l_{κ} ;

– теоретическую, индикаторную и эффективную мощности компрессора N_{κ}, N_i, N_e ;

– теоретический и действительный холодильные коэффициенты $\epsilon_{\text{теор}}, \epsilon_{\pi}.$

По полученной холодопроизводительности при стандартных условиях из таблиц подобрать тип компрессора. Дать описание технологической схемы холодильной установки и выбрать холодильное оборудование.

Определяются следующие характеристики установки:

 параметры хладагента (*p*, *T*, *h*) в характерных точках цикла и удельный объем v₁ всасываемых паров (из *T*–*s*-диаграммы хладагента);

– удельная массовая и объемная холодопроизводительности q_0 и q_v по формулам соответственно:

$$q_0 = h_1 - h_4$$
, кДж/кг;

$$q_{\rm v} = q_0 / v_1$$
, кДж/м³;

масса хладагента, циркулирующего в системе:

$$m = Q_0 / q_0$$
, кг/с;

 – действительный объем, описанный поршнем (для поршневых компрессоров):

$$V_{\rm p} = v_1 m, \, {\rm m}^3/{\rm c};$$

- теоретическая работа сжатия в компрессоре

$$l_{\kappa} = h_2 - h_1$$
, кДж/кг;

- расход охлаждающей воды в компрессоре

$$m_{\rm B} = m \Big[(h_2 - h_{2'}) + r_{2'-3} \Big] / (c_{\rm B} \Delta t_{\rm B}), \, {\rm KF/c};$$

- удельная теплота парообразования

$$r_{2'-3} = h_{2'} - h_3$$
, кДж/кг;

 – удельное количество теплоты, отдаваемой хладагентом в конденсаторе:

$$q = q_0 + l_\kappa$$
, кДж/кг;

- количество рассола, циркулирующего в холодильных камерах:

$$m_{\rm p} = Q_0 / c_{\rm p} \Delta t_{\rm p}, \, \kappa \Gamma/c;$$

- теоретическая мощность компрессора

$$N_{\rm K} = l_{\rm K} m$$
, KBT;

- индикаторная мощность

$$N_i = \frac{N_\kappa}{\eta_i}, \kappa BT,$$

где η_i – индикаторный КПД $\eta_i = \lambda_{\omega} + bt_0$; коэффициент подогрева $\lambda_{\omega} = T_0 / T_{\kappa}$; $T_0 = (t_0 + 273, 15)$ K; $T_{\kappa} = (t_{\kappa} + 273, 15)$ K;

b = 0,001 – для аммиачных вертикальных простого действия;
 b = 0,0025 – для фреоновых вертикальных простого действия;
 – эффективная мощность

$$N_e = \frac{N_i}{\eta_{\text{mex}}}, \kappa BT,$$

где $\eta_{\text{мех}}$ – механический КПД; $\eta_{\text{мех}} = 0,8-0,9;$

$$N_{\mathfrak{H}} = \frac{N_e}{\eta_{\mathfrak{H}}}, \, \kappa \mathrm{Br}$$

где η_э – электрический КПД; η_э = 0,9; – теоретический холодильный коэффициент

$$\varepsilon_{\text{reop}} = \frac{q_0}{l_{\kappa}};$$

- действительный холодильный коэффициент

$$\varepsilon_{\rm d} = \varepsilon_{\rm reop} \eta_i \eta_{\rm max}$$
.

Для подбора компрессора необходимо заданную холодопроизводительность пересчитать на стандартную.

Для стандартных условий

$$t_0 = -15 \text{ °C}; \quad t_{\kappa} = 30 \text{ °C}; \quad t_{\Pi} = 25 \text{ °C}.$$

$$Q_{\rm ct} = Q_0 \frac{q_{\rm vct} \lambda_{\rm ct}}{q_{\rm v} \lambda}, \, \kappa {\rm Bt},$$

где $\lambda - \kappa o \Rightarrow \phi \phi$ ициент подачи: $\lambda = \lambda_v \lambda_\omega \lambda_H$;

λ_ν – объемный коэффициент компрессора:

$$\lambda_{v} = 1 - C \left(\frac{p_{\kappa}}{p_{0}} - 1 \right);$$

 $C = V_c / V_{\pi}$ – отношение объема вредного пространства к действительному объему, в расчете принять C = 5 %;

 $\lambda_{\rm H}$ – коэффициент неплотности, принять $\lambda_{\rm H} = 0.95 - 0.98$.

По полученной холодопроизводительности для стандартных условий из таблиц подбирают тип компрессора.

7. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 7.1

Расчет сужающегося сопла

1. Определить теоретическую скорость истечения водяного пара из сужающегося сопла в среду с давлением $p_2 = 2$ МПа, если абсолютное давление пара на входе в сопло $p_1 = 3$ МПа, а температура $t_1 = 480$ °C. Найти также расход пара через сопло, если известна площадь выходного сечения f = 0,0053 м².

Решение

Определим режим истечения пара из сопла. Так как отношение

$$\frac{p_2}{p_1} = \frac{2}{3} = 0,667 > 0,546,$$

следовательно, режим истечения дозвуковой.

По *h*-*s*-диаграмме для начальных параметров $p_1 = 3$ МПа и $t_1 = 480$ °C находим энтальпию в точке *l* (см. рис. 3.2, *a*):

$$h_1 = 3412 \text{ кДж/кг.}$$

Затем опускаемся по адиабате до пересечения с изобарой $p_2 = 2$ МПа и определяем энтальпию в точке 2:

$$h_2 = 3281 \text{ кДж/кг.}$$

Так как режим истечения дозвуковой, то скорость истечения из сужающегося сопла можно определить по формуле (см. табл. 3.1):

$$ω = \sqrt{2000(h_1 - h_2)} = \sqrt{2000(3412 - 3281)} = 511,9$$
 м/с.

По *h*-*s*-диаграмме определим удельный объем пара в точке 2: $v_2 = 0.15 \text{ m}^3/\text{кг}.$

Определим расход пара через сужающееся сопло при данном режиме истечения:

$$M = \frac{f\omega}{v_2} = \frac{0,0053 \cdot 511,9}{0,15} = 18 \text{ kr/c}.$$

2. Определить теоретическую скорость истечения водяного пара из сужающегося сопла в среду с давлением $p_2 = 0,1$ МПа, если абсолютное давление пара на входе в сопло $p_1 = 3$ МПа, а температура $t_1 = 480$ °C.

Решение

Определим режим истечения пара из сопла. Так как отношение

$$\frac{p_2}{p_1} = \frac{0.1}{3} = 0,0333 < 0,546,$$

следовательно, режим истечения сверхзвуковой.

По *h*–*s*-диаграмме для начальных параметров $p_1 = 3$ МПа и $t_1 = 480$ °С находим энтальпию в точке *l* (рис. 3.2, *б*):

$$h_1 = 3412$$
 кДж/кг.

Из соотношения для перегретого пара $\left(\frac{p_2}{p_1}\right)_{\rm kp} = 0,546$ находим

давление в критической точке 2:

$$p_{\rm kp} = 0,546 p_1 = 0,546 \cdot 3 = 1,638$$
 MITa.

Опустимся по адиабате до пересечения с изобарой $p_{\rm kp} = 1,638~{
m M\Pi a}$ и определим энтальпию в критической точке:

Так как режим истечения сверхзвуковой, то скорость истечения из сужающегося сопла можно определить по формуле (см. табл. 3.1)

$$\omega_{\rm kp} = \sqrt{2000(h_{\rm l} - h_{\rm kp})} = \sqrt{2000(3412 - 3220)} = 619,68 \,\,{\rm m/c}.$$

Задача 7.2

Расчет сопла Лаваля

Определить теоретическую скорость истечения водяного пара из сопла Лаваля в среду с давлением $p_2 = 0,1$ МПа, если абсолютное давление пара на входе в сопло $p_1 = 3$ МПа, а температура $t_1 = 480$ °C. Также определить действительную скорость истечения пара из сопла Лаваля и определить его основные размеры (при действительном истечении), если расход пара M = 18 кг/с, скоростной коэффициент сопла 0,95, а угол конусности расширяющейся части сопла 10°.

Решение

Сопло Лаваля работает в сверхзвуковом режиме.

Теоретическая скорость в минимальном (критическом) сечении сопла Лаваля определяется по формуле (3.3) аналогично скорости истечения из сужающегося сопла при сверхзвуковом режиме и посчитана в задаче 7.1 (см. рис. 3.2, δ): $\omega_{\rm kp} = 619,68$ м/с ($h_1 = 3412$ кДж/кг).

Чтобы найти энтальпию h_2 , из точки l опускаемся по адиабате до пересечения с изобарой $p_2 = 0,1$ МПа (см. рис. 3.2, δ). Получаем

$$h_2 = 2607 \,$$
 кДж/кг.

Теоретическая скорость истечения на выходе из сопла Лаваля определяется по формуле (3.2)

$$\omega = \sqrt{2000(h_1 - h_2)} = \sqrt{2000(3412 - 2607)} = 1268,86$$
 m/c.

Если сравнить данную скорость истечения с ее значением в задаче 7.1, то можно сделать вывод, что сопло Лаваля позволяет повысить скорость истечения пара в два раза.

Теперь рассчитаем сопло Лаваля при действительном истечении пара (с учетом трения).

Действительную скорость истечения на выходе из сопла Лаваля можем найти по формуле (3.4):

$$\omega_{2\pi} = \varphi \omega = 0,95 \cdot 1268,86 = 1205,42$$
 M/c.

Для нахождения положения точки 2д на h-s-диаграмме (см. рис. 3.4) значение энтальпии $h_{2д}$ найдем с помощью коэффициента потери энергии в сопле. Коэффициент потери энергии в сопле по формуле (3.5)

$$\zeta = 1 - \varphi^2 = 1 - 0,95^2 = 0,0975 \; .$$

Тогда энтальпия пара в конце действительного процесса истечения $h_{2,\text{д}}$ в соответствии с формулой (3.6)

$$h_{2,\mathrm{I}} = \zeta (h_1 - h_2) + h_2 = 0,0975 (3412 - 2607) + 2607 = 2685,5$$
 кДж/кг.

Зная энтальпию $h_{2\pi}$ и давление среды на выходе из сопла Лаваля $p_2 = 0,1$ МПа, используя *h*–*s*-диаграмму, определим удельный объем пара на выходе из сопла: $v_{2\pi} = 1,718$ м³/кг.

Действительную скорость истечения в критическом сечении сопла Лаваля найдем по формуле (3.7):

$$ω_{\text{кр.д}} = φω_{\text{кр}} = 0,95 \cdot 619,68 = 588,7$$
 м/с.

Зная энтальпию и критическое давление в минимальном сечении сопла Лаваля $p_{\rm kp} = 1,638$ МПа (посчитано в предыдущей задаче), используя *h*-*s*-диаграмму, определим удельный объем пара в критическом сечении сопла: $v_{\rm kp, \pi} = 0,18$ м³/ кг.

Минимальное сечение можем найти по формуле (3.8)

$$f_{\min} = \frac{Mv_{\text{Kp},\text{A}}}{\omega_{\text{Kp},\text{A}}} = \frac{18 \cdot 0.18}{588,7} = 55,04 \cdot 10^{-4} \,\text{m}^2 = 55,04 \,\text{cm}^2.$$

Теперь определим диаметр по формуле (3.9):

$$d_{\min} = \sqrt{\frac{4f_{\min}}{\pi}} = \sqrt{\frac{4 \cdot 55,04}{\pi}} = 8,37$$
 см.

Тогда площадь выходного сечения по формуле (3.10)

$$f = \frac{Mv_{2\pi}}{\omega_{2\pi}} = \frac{18 \cdot 1,718}{1205,42} = 256,54 \cdot 10^{-4} \,\mathrm{m}^2 = 256,54 \,\mathrm{cm}^2,$$

а диаметр сечения по формуле (3.11)

$$d = \sqrt{\frac{4f}{\pi}} = \sqrt{\frac{4 \cdot 256, 54}{\pi}} = 18,08$$
 cm.

Длина расширяющейся части сопла Лаваля по формуле (3.12)

$$l = \frac{d - d_{\min}}{2 \operatorname{tg} \frac{\alpha}{2}} = \frac{18,08 - 8,37}{2 \operatorname{tg} 5^{\circ}} = 55,49 \text{ cm}$$

Задача 7.3

Расчет цикла паротурбинной установки (цикл Ренкина)

В паротурбинной установке, работающей по циклу Ренкина, начальные параметры пара $p_1 = 14$ МПа, $t_1 = 550$ °С и давление в конденсаторе $p_2 = 0,018$ МПа (см. рис. 4.1). Найти термический КПД цикла Ренкина, удельный расход пара и конечную степень сухости пара в процессе расширения на лопатках турбины.

Решение

По *h*-*s*-диаграмме для начальных параметров $p_1 = 14$ МПа и $t_1 = 550$ °C находим энтальпию (см. рис. 4.3):

$$h_1 = 3461 \text{ кДж/кг.}$$

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой $p_2 = 18$ кПа и находим энтальпию в точке 2:

Энтальпия $h'_2 = 241,95$ кДж/кг (определяется по таблицам воды и водяного пара).

Тогда термический КПД цикла Ренкина по формуле (4.1)

$$\eta_t = \frac{h_1 - h_2}{h_1 - h_2'} = \frac{3461 - 2149}{3461 - 241,95} = 0,407 \; .$$

Конечную степень сухости определим по построению: $x_2 = 0,807$. Определим удельный расход пара по формуле (4.2):

Задача 7.4

Расчет цикла паротурбинной установки со вторичным перегревом

В паротурбинной установке с начальными параметрами пара $p_1 = 14 \text{ M}\Pi a$, $t_1 = 550 \text{ °C}$ и давлением в конденсаторе $p_2 = 0,018 \text{ M}\Pi a$ был введен промежуточный перегрев пара при давлении p' = 19 бар до температуры t' = 450 °C (см. рис. 4.4). Найти термиче-

ский КПД цикла с промежуточным перегревом и сравнить его с термическим КПД цикла Ренкина до введения промежуточного перегрева пара (из задачи 7.3).

Решение

По *h*–*s*-диаграмме (см. рис. 4.5) энтальпия $h_1 = 3461$ кДж/кг (из задачи 7.3).

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой p' = 19 бар и находим энтальпию в точке *a*:

Далее по изобаре p' = 19 бар поднимаемся до пересечения с изотермой t' = 450 °C и получаем энтальпию в точке *b*:

$$h_b = 3359 \text{ кДж/кг.}$$

Затем по адиабате опускаемся до пересечения с изобарой $p_2 = 18$ кПа и находим энтальпию в точке 2:

Энтальпия $h'_2 = 241,95$ кДж/кг (определяется по таблицам воды и водяного пара).

Тогда термический КПД цикла Ренкина с промежуточным перегревом по формуле (4.4)

$$\eta_{t,\text{rep.}} = \frac{(h_1 - h_a) + (h_b - h_2)}{(h_1 - h_2') + (h_b - h_a)} = \frac{(3461 - 2901) + (3359 - 2396)}{(3359 - 241,95) + (3359 - 2901)} = 0,426.$$

Конечную степень сухости определим по построению: $x_2 = 0.911$.

Степень сухости пара в конце процесса со вторичным перегревом больше, чем в обычном цикле Ренкина (рис. 7.1): $x_2 > x_{2(1)}$, что защищает турбины от коррозии.

Рис. 7.1. Сравнение процессов расширения пара на лопатках турбины в цикле со вторичным перегревом и цикле Ренкина

Задача 7.5

Расчет цикла паротурбинной установки с регенерацией

В паротурбинной установке с начальными параметрами пара $p_1 = 14$ МПа, $t_1 = 550$ °С и давлением в конденсаторе $p_2 = 0,018$ МПа для подогрева питательной воды из турбины отбирался пар при давлении $p_{\text{отб}} = 3$ МПа (см. рис. 4.6). Найти термический КПД цикла с регенерацией и удельный расход пара.

Решение

По h-s-диаграмме (см. рис. 4.7) энтальпия $h_1 = 3461$ кДж/кг (определено в предыдущих задачах).

Процесс расширения адиабатный, поэтому опускаемся вертикально вниз до пересечения с изобарой $p_{\text{отб}} = 3$ МПа и находим энтальпию в точке 21:

$$h_{\rm otf} = 3008 \ \ \kappa \ \ {\rm KF}.$$

Затем по адиабате опускаемся до пересечения с изобарой $p_2 = 18$ кПа и находим энтальпию в точке 2:

$$h_2 = 2149$$
 кДж/кг.

Энтальпии h'_2 и $h'_{\text{отб}}$ определяются из таблиц воды и водяного пара по давлению p_2 и $p_{\text{отб}}$ соответственно:

 $h'_2 = 241,95$ кДж/кг; $h'_{\text{отб}} = 1008,4$ кДж/кг.

Количество отобранного пара по формуле (4.6)

$$\alpha = \frac{h'_{\text{orf}} - h'_2}{h_{\text{orf}} - h'_2} = \frac{1008, 4 - 241, 95}{3008 - 241, 95} = 0,28.$$

Термический КПД паросиловой установки с регенерацией по формуле (4.5)

$$\eta_{t,\text{per}} = \frac{h_1 - h_2 - \alpha (h_{\text{orf}} - h_2)}{h_1 - h_{\text{orf}}'} = \frac{3461 - 2149 - 0.28(3008 - 2149)}{3461 - 1008, 4} = 0.44.$$

Удельный расход пара в регенеративном цикле по формуле (4.7)

$$d_{\rm per} = \frac{3600}{h_1 - h_2 - \alpha (h_{\rm or6} - h_2)} =$$

$$=\frac{3600}{3461-2149-0,28(3008-2149)}=3,36\,\text{kg/(kBt\cdot y)}.$$

Сравнительный расчет расхода топлива на АЭС и ТЭС

Электрическая мощность АЭС N = 2400 МВт. При расщеплении 1 кг ядерных горючих выделяется энергия в количестве 22,9 млн кВт·ч/кг (Q_{HVD}^{p}).

На выработку 1 кВт·ч электроэнергии, производимой АЭС, расходуется 336 г условного топлива ($b_{y,r}$), которое при сгорании 1 кг выделяет 7000 ккал/кг ($Q_{Hy,r}^{p}$). Определить КПД АЭС и суточный расход топлива B_{yp} .

Найти также суточный расход топлива на ТЭС B_{np} с такими же КПД и расходом условного топлива на 1 кВт ч, если при сгорании 1 м³ природного газа, используемого для работы ТЭС, выделяется энергия в количестве 34 МДж ($Q_{H \Pi D}^{p}$).

Определим КПД АЭС:

$$\eta = 100 \frac{3600}{Q_{\rm H\,y.T}^{\rm p} b_{\rm y.T}} = 100 \frac{3600}{7000 \cdot 4,1868 \cdot 0,336} = 36,56\%.$$

Выработка электроэнергии на АЭС в сутки

$$W_{2} = N\tau = 2400 \cdot 24 = 57600 \text{ MBt} \cdot 4.$$

Расход условного топлива при данной выработке

$$B_{\rm y.t} = W_{\rm y}b_{\rm y.t} = 57600 \cdot 10^3 \cdot 0,336 = 19,35 \cdot 10^6$$
 кг у. т.

Следовательно, расход урана

$$B_{\rm yp} = B_{\rm y.r} \frac{29,31}{Q_{\rm Hyp}^{\rm p}} = 19,35 \cdot 10^6 \cdot \frac{29,31}{22,9 \cdot 10^3 \cdot 3600} = 6,88 \text{ kr}$$

Так как ТЭС имеет одинаковые основные характеристики с АЭС, то расход природного газа на ТЭС составит

$$B_{\rm np} = B_{\rm y.r} \frac{29,31}{Q_{\rm H\,np}^{\rm p}} = 19,35 \cdot 10^6 \cdot \frac{29,31}{34} = 16,68 \cdot 10^6 \, {\rm m}^3.$$

ЛИТЕРАТУРА

Основная

1. Кириллин, В. А. Техническая термодинамика : учебник для теплоэнергетических специальностей вузов / В. А. Кириллин, В. В. Сычев, А. Е. Шейндлин – 4-е изд. – М. : Энергоатомиздат, 1983. – 416 с.: ил.

2. Хрусталев, Б. М. Техническая термодинамика : учебник для строительных и энергетических специальностей вузов : в 2 ч / Б. М. Хрусталев, А. П. Несенчук, В. Н. Романюк. – Минск : Технопринт, 2004. – Ч.1. – 2004. – 486 с. : ил.

3. Есьман, Р. И. Термодинамика, теплопередача и двигатели внутреннего сгорания : учебное пособие для студентов вузов / Р. И. Есьман, В. М. Железко, В. М. Адамов. – Минск : Вышэйшая школа, 1985. – 271 с.: ил.

Дополнительная

4. Александров, А. А. Таблицы теплофизических свойств воды и водяного пара / А. А. Александров, Б. А. Григорьев. – 2-е изд. – М. : Издательский дом МЭИ, 2006. – 168 с.: ил.

5. Барилович, В. А. Основы технической термодинамики и теории тепло- и массообмена : учебное пособие для вузов / В. А. Барилович, Ю. А. Смирнов. – М. : ИНФРА-М, 2014. – 432 с.: ил.

6. Термодинамика : учебное пособие для вузов : в 2 ч. / В. П. Бурдаков [и др.]. – Ч.1. – М. : Дрофа, 2009. – 479 с.: ил.

7. Воронов, В. Н. Химико-технологические режимы АЭС с водоводяными энергетическими реакторами : учебное пособие для вузов / В. Н. Воронов, Б. М. Ларин, В. А. Сенина. – М. : Издательский дом МЭИ, 2006. – 390 с.: ил.

8. Есьман, Р. И. Теоретические основы теплотехники : электронный учебно-методический комплекс (ЭУМК) / Р. И. Есьман. – Минск, 2013. – 377 с.

9. Сборник задач по технической термодинамике : учебное пособие для теплоэнергетических специальностей вузов / Т. Н. Андрианова [и др]. – 5-е изд., перераб. и доп. – М. : Издательский дом МЭИ, 2006. – 356 с. : ил.

10. Есьман, Р. И. Техническая термодинамика : учебно-методическое пособие / Р. И. Есьман, Ю. П. Ярмольчик, М. А. Ярмольчик. – Минск : БНТУ, 2008. – 24 с.

11. Термодинамика. Терминология. – Вып. 103. – М. : Наука, 1984. – 39 с.

12. ENEKcalc: электронный справочник.

13. Есьман, Р. И. Проектирование, монтаж и эксплуатация теплоэнергетического оборудования : методическое пособие / Р. И. Есьман, В. И. Чернышевич. – Минск : ГАЗ-институт, 2008. – 31 с.

14. Андрющенко, А. И. Основы термодинамики циклов теплоэнергетических установок : учебное пособие для теплоэнергетических специальностей вузов / А. И. Андрющенко. – М. : Высшая школа, 1985. – 319 с.: ил.

приложение

Основные термодинамические процессы идеального газа

Таблица П1

Политропный	$C = C_n = \text{const}$	$PV^{n} = \text{const},$ $n = \frac{C_{n} - C_{p}}{C_{n} - C_{v}}$	$C_{\sqrt{d}}T$	$\frac{R(T_1 - T_2)}{n - 1} = \frac{R[V_1 - P_2]}{n - 1}$	$C_n(T_2 - T_1) = \frac{C_n(T_2 - T_1)}{n - 1}$	$S_2 - S_1 =$ $= C_n \ln \frac{T_2}{T_1}$
Адиабатический	$\delta { ilde O}=0$	$PJ^{k} = \text{const},$ $k = C_{p}/C_{v}, C = 0$	$C_V dT$	$C_{V}(T_{1} - T_{2}) = \frac{R}{k-1}(T_{1} - T_{2})$	0	0
Изотермический	T = const	$P_1/P_2 = V_2/V_1,$ $C = \infty$	0	$RT \ln \frac{V_2}{V_1}$	$RT \ln \frac{V_2}{V_1}$	$S_2 - S_1 =$ = $R \ln \frac{P_2}{P_1}$
Изобарический	P = const	$V_2/V_1 = T_2/T_1$	$C_{V}dT$	$R(T_{2}-T_{1})$	$C_p dT$	$S_2 - S_1 =$ $= C_p \ln \frac{V_2}{V_1} = C_p \ln \frac{T_2}{T_1}$
Изохорический	V = const	$P_2/P_1=T_2/T_1$	$C_{v}dT$	0	$C_{v}dT$	$S_2 - S_1 =$ $= C_v \ln \frac{P_2}{P_1} = C_v \ln \frac{T_2}{T_1}$
Пара-	метры	Урав- нения	δE	ŷA	$\widetilde{O}_{\mathbb{Q}}$	δS

Окончание табл. П1

Таблица П2

Циклы ДВС

Характерис- тики цикла	Изохорный подвод теплоты. Цикл Отто	Изобарный подвод теплоты. Цикл Дизеля	Смешанный подвод теплоты. Цикл Тринклера
	Степень сжатия $\varepsilon = v_1/v_2$ Степень повышения давления	Степень сжатия $\epsilon = v_1 N_2$ Степень предв. расширения	Степень сжатия $\varepsilon = v_1 \Lambda_2$ Степень повышения давления
	$\lambda=p_3/p_2$	$\rho = v_3/v_2$	$\lambda = p_3/p_2$
			Степень предварит. расширения $\rho = v_{a}/v_{3}$
Диаграммы	$P \neq 3$ $T \uparrow q_1$	$P \uparrow 2 \bullet \bullet 3$ $T \uparrow q_1$	
		N N	V S
Приложения	Бензиновый (газовый) двигатель	Дизельный двигатель с впрыском	Дизельный двигатель с впрыском
	с искровым поджигом	после верхней мертвой точки	до верхней мертвой точки
Термический	$m = 1 - \frac{T_4 - T_1}{2}$	$n = 1 - \frac{T_4 - T_1}{2}$	$I_1 - S_1 - I_1 - u$
KIIJ ž	$T_{1T} - T_{2} - T_{2}$	$k(T_3 - T_2)$	$T_{1T} = T_{1} - T_{2} + k(T_{4} - T_{3})$
$\eta_{\rm T} = 1 - \frac{q_2}{a_2}$	n =1- <u>-1</u>	$p^k - 1$	$\lambda \rho^k - 1$
Ĩ٨	\mathbf{e}^{k-1}	$\eta_{\rm T} = 1 - \frac{1}{k\epsilon^{k-1}(\rho - 1)}$	$\eta_{\mathrm{T}} = 1 - \frac{\varepsilon^{k-1}}{\varepsilon^{k-1} [\lambda - 1 + k\lambda(\rho - 1)]}$

Окончание табл. П2

Характерис- тики цикла	Изохорный Цикл Отто	і подвод те	плоты.	Изобарны Цикл Диз	й подвод те еля	еплоты.	Смешанныі Цикл Тринь	і подвод теп. спера	10Tbl.
	Степень сж. Степень по	атия $\varepsilon = v_{l'}$ вышения да	√₂ вления	Степень ся Степень ш	катия $\varepsilon = v$ редв. расши	₁ ⁄v ₂ рения	Степень сжа Степень пов	тия $\varepsilon = v_1/v_2$ ышения давло	вина
	$\lambda = p_3/p_2$			$\rho = v_3/v_2$		_	$\lambda = p_3/p_2$ CTEITEHLS IIPE)	цварит. расши	ирения
Среднее индикаторное давление $P_i = l_{I_{II}} / (V_2 - V_2)$	$P_i = I$	$P_{l} \frac{(\varepsilon^{k} - \varepsilon)(\lambda)}{(k-1)(\varepsilon-1)}$	-1)	$P_i = P_1 \frac{\varepsilon[.]}{\varepsilon}$	$\frac{k\varepsilon^{k-1}(\rho-1)}{(k-1)(\varepsilon}$	$\frac{-\left(\rho^{k}-1\right)]}{-1)}$	$p = \sqrt{4}\sqrt{3}$ $= P_{1} \frac{\varepsilon[(\lambda - 1)]}{1}$	$P_i = \frac{P_i}{+ k\varepsilon^{k-1} \lambda(\rho - 1)}$ $(k - 1)(\varepsilon - 1)$	$\frac{\left(-(\lambda\rho^{k}-1)\right]}{\left(-(\lambda\rho^{k}-1)\right]}$
Подведенная и отведенная теплота	$q_1 = q_2$	$c_{v}T_{1}\varepsilon^{k-1}(\lambda - 1)$ $= c_{v}T_{1}(\lambda - 1)$	-1)	⁷ b = ¹ b	$= c_v T_1 k \varepsilon^{k-1} (p_2)$ $= c_v T_1 (p^k - p_2)$	1) - 1)	$q_1 = c_v T_1$ q_2	$[\varepsilon^{k-1}[\lambda - 1 + k]$ $= c_v T_1(\lambda \rho^k -$	$\lambda(\rho-1)]$ 1)
Значения КПД	۳ 13 13	k = 1,35 0,553 0,593	$\begin{array}{c} k = 1, 4 \\ 0, 602 \\ 0, 642 \end{array}$	k = 1,4 E 16 20 24	$\begin{array}{c} \rho=1,5\\ 0,64\\ 0,671\\ 0,694\end{array}$	p=2,5 0,536 0,654 0,679	$\begin{array}{c c} k = 1,4; & \varepsilon = \\ \lambda & \lambda \\ 1,5 \\ 2 \end{array}$	$\begin{array}{c} 20\\ \rho = 1,5\\ 0,679\\ 0,682 \end{array}$	$\rho = 2.5$ 0,635 0,639

Таблица ПЗ

Циклы газотурбинных установок

Характеристики	ГТУ с изобарным подводом теплоты, P = const	ГТУ с изохорным подводом теплоты $V = const$
цикла	Степень повышения давления	Степень повышения давления
	в компрессоре $\beta = p_2/p_1$	в компрессоре $\beta = p_2/p_1$
	Степень изобарного расширения	Степень добавочного повышения давления
	$\rho = \nu_3 / \nu_2$	$\lambda=p_3/p_2$
Диаграммы	$T \blacklozenge q_1$	$P \neq 3 \bullet$ $T \neq q_1 \neq 3$
		2
		2
Приложения	ГТУ энергетических станций, включая парогазо-	Пульсирующие реактивные авиационные двигатели
1	вые установки.	
	Прямоточные авиационные двигатели, включая	
	турбокомпресорные	
Подведенная	(1 - i)/k = i	、・ <i>、、オ</i> ハ(レーオ)いい
теплота q ₁	$q_1 = c_p I_1 \beta^{(1)} \beta^{(2)} \beta^{(2)$	$q_1 = c_v I_1 \beta^{v_v} \cdot \gamma^{v_v} (\lambda - 1)$
Отведенная теплота	$a_2 = c T(\alpha - 1)$	$z = -2 T O \frac{1/k}{k}$
92	$h_2 - c_p r_1 (r_2 - r_2)$	$q_2 = c_{pI1}(\kappa - 1)$

ΓTY с изохорным подводом теплоты $V=$ const	Степень повышения давления	в компрессоре $\beta = p_2/p_1$	Степень добавочного повышения давления	$\lambda = p_3/p_2$	$\begin{bmatrix} x & -1 \\ x & -1 \end{bmatrix} \frac{k(T_4 - T_1)}{k(T_4 - T_1)}$	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $-\frac{1}{2}$	$k(\lambda_{1/k} - 1)$	$\eta_{\rm T} = 1 - \frac{1}{\beta^{(k-1)/k} (\lambda - 1)}$	R(k-1)/k (2, -1)	$\overline{T}_{\text{InolBold}} = T_1 \frac{p}{r} \frac{(n-1)}{r}$	ln A	$- \lambda^{1/k} - 1$	$T_{\text{OTBOM}} = T_1 \frac{\lambda}{1 + \lambda} \frac{1}{1/k}$	In λ^{**}	$r = \frac{1}{2} \frac{1}{k} $	$l_{\rm u} = c_{\rm v} I_{\rm l} [10^{\circ} - 1^{\circ} - $	k = 1,4	β $\lambda = 1,5$ $\lambda = 2$	10 0,513 0,535	15 0,566 0,586
ГТУ с изобарным подводом теплоты, <i>P</i> = const	Степень повышения давления	в компрессоре $\beta = p_2/p_1$	Степень изобарного расширения	$\rho = \nu_3 / \nu_2$	$T_4 - T_1$	$\eta_{\mathrm{T}} = 1 - \frac{1}{T_3 - T_2}$		$\eta_{\rm T} = 1 - \frac{\beta(k-1)/k}{\beta(k-1)/k}$	$- B^{(k-1)/k}(\alpha - 1)$	$T_{\text{notBoll}} = T_1 \frac{P}{1 - \frac{(P-1)}{1 - 1}}$	du	=0-1	$T_{\text{OTBOL}} = T_1 \frac{\Gamma}{\ln \alpha}$	μp	$1 - \frac{1}{2} - $	$t_{\rm u} = c_p t_1 (p-1) (p^2 - 1)$		β $k = 1,35$ $k = 1,4$	10 0,45 0,482	15 0,507 0,539
Характеристики	цикла				Термический КПД	$\eta_{\rm T} = 1 - \frac{q_2}{2}$	91		Среднеинтеграль-	ная температура	подвода теплоты	Среднеинтеграль-	ная температура	отвода теплоты	Работа цикла	$l_{\rm II} = q_1 - q_2$	Значения	КПД		

Окончание табл. П3

Таблица П4

<i>t</i> , ℃	р 10 -5, Па	<i>Ср,</i> кДж/(кг К)	λ, Вт/(м К)	<i>а 10⁶</i> , м ² /с	<i>v 10⁶</i> , ^{M²/c}	Pr
0	1,01	4,212	0,551	0,131	1,789	13,67
10	1,01	4,191	0,575	0,137	1,306	9,52
20	1,01	4,183	0,599	0,143	1,006	7,02
30	1,01	4,174	0,618	0,149	0,805	5,42
40	1,01	4,174	0,634	0,153	0,659	4,31
50	1,01	4,174	0,648	0,157	0,556	3,54
60	1,01	4,178	0,659	0,161	0,478	2,98
70	1,01	4,187	0,668	0,163	0,415	2,55
80	1,01	4,195	0,675	0,166	0,365	2,21
90	1,01	4,208	0,680	0,167	0,326	1,95
100	1,01	4,220	0,688	0,169	0,295	1,75
110	1,43	4,233	0,685	0,170	0,272	1,60

Физические параметры воды на линии насыщения

Таблица П5

Физические	параметр	ры некото	рых газов
------------	----------	-----------	-----------

Газы	Химичес- кая фор- мула	Молеку- лярный вес	R , Дж/(кг К)	ρ , кг/м ³	t кр, °С	Р кр 10 ⁻⁵ , Па	<i>Ср</i> , КДж/(кг К) при <i>t</i> = 25°С
Азот Водород Водяной	N2 H2	28 2	297 4124	1,25 0,09	-147,1 -239,9	32,8 12,6	1,038 14,190
пар Воздух Гелий	H2O He	18 29 4	462 287 2078	0,80 1,293 0,179	+374,2 -140,8 -267,9	221,4 36,5 2,26	1,860 1,004 5,192
Кисло- род Окись	O2	32	260	1,43	-118,8	48,7	0,917
углерода Углекис- лота	CO CO ₂	28 44	297 189	1,25 1,98	-138,7 +31,0	33,9 71,5	1,038 0,829

Рис. П1. *h*-*s*-диаграмма воды и водяного пара

Таблица Пб

n			10			100	100		1.60	100	200
$P, M\Pi a$	<i>t</i> , ℃	20	40	60	80	100	120	140	160	180	200
0,004	i	83,7	2574	2612	2650	2688	2726	2764	2803	2841	2880
	S	0,30	8,54	8,65	8,76	8,87	8,97	9,06	9,15	9,24	9,32
0,008	i	83,7	167,5	2612	2650	2688	2726	2764	2802	2841	2880
	S	0,30	0,57	8,23	8,34	8,44	8,54	8,64	8,73	8,81	8,90
0,010	i	83,7	167,5	2611	2649	2688	2726	2764	2802	2841	2879
	S	0,30	0,57	8,23	8,34	8,44	8,54	8,64	8,73	8,81	8,90
0,012	i	83,7	167,5	2611	2649	2687	2725	2764	2802	2841	2879
	S	0,30	0,57	8,14	8,25	8,36	8,46	8,55	8,64	8,73	8,81
0,014	i	83,7	167,5	2611	2649	2687	2725	2763	2802	2840	2879
	S	0,30	0,57	8,07	8,18	8,29	8,39	8,48	8,57	8,66	8,74
0,016	i	83,7	167,5	2610	2649	2687	2725	2763	2802	2840	2879
	S	0,30	0,57	8,01	8,12	8,23	8,32	8,42	8,51	8,60	8,68
0,020	i	83,7	167,5	251,1	2648	2687	2725	2763	2801	2840	2879
	S	0,30	0,57	0,83	8,02	8,12	8,22	8,32	8,41	8,49	8,58
0,030	i	83,7	167,5	251,1	2646	2685	2724	2762	2801	2839	2878
	S	0,30	0,57	0,83	7,83	7,93	8,03	8,13	8,22	8,30	8,39
0,10	i	83,9	167,5	251,1	334,9	2676	2717	2757	2796	2835	2875
	S	0,30	0,57	0,83	1,07	7,36	7,47	7,56	7,65	7,74	7,83
0,12	i	83,9	167,5	251,1	334,9	419,0	2715	2755	2795	2834	2874
	S	0,30	0,57	0,83	1,07	1,31	7.38	7,48	7,67	7,66	7,74
0,60	i	84,3	167,9	251,5	335,2	419,1	503,1	589,1	2759	2805	2849
	S	0,30	0,75	0,83	1,07	1,31	1,53	1,74	6,77	6,87	6,96
0,80	i	84,5	168,1	251,7	335,3	419,2	503,8	589,1	675,3	2792	2839
	S	0,30	0,57	0,83	1,07	1,31	1,53	1,74	1,94	6,72	6,81
1,0	i	84,7	168,3	251,8	335,4	419,3	503,9	589,2	675,4	2778	2827
	S	0,30	0,57	0,83	1,07	1,31	1,53	1,74	1,94	6,59	6,69
1,2	i	84,9	168,5	251,9	335,5	419,4	504,0	589,3	675,5	2790	2816
1	S	0,30	0,57	0,83	1,07	1,31	1,53	1,74	1,94	6,53	6,59
1,4	i	85,1	168,7	252,1	335,7	419,6	504,2	589,5	675,7	763,2	2803
	S	0,30	0,57	0,83	1,07	1,31	1,53	1,74	1,94	2,14	6,50
1,6	i	85,3	168,8	252,2	335,8	419,7	504,3	589,6	675,7	763,2	852,4
	S	0,30	0,57	0,83	1,07	1,31	1,53	1,74	1,94	2,14	2,33
2	i	85,7	169,2	252,6	336,2	420,1	504,7	589,9	675,9	763,2	852,4
	S	0,30	0,57	0,83	1,07	1,30	1,53	1,74	1,94	2,14	2,33
10	<i>i</i>	93,2	176,9	259,6	342,9	426,5	510,5	595,3	681,0	768,0	856,0
	S	0,30	0,57	0,82	1,07	1,30	1,52	1,73	1,93	2,12	2,31
30	i	112,0	194,1	276,5	359,1	441,9	525,1	609,0	693,6	779,1	865,4
	S	0,29	0,56	0,81	1,05	1,28	1,50	1,71	1,91	2,10	2,29
											1

Вода и перегретый водяной пар (зависимость *h*–*S*)

Окончание табл. Пб

T			T	T	T						
Р ,МПа	t ,⁰C	220	240	260	280	300	350	400	450	500	600
0,004	i	2918	2958	2997	3037	3077	3177	3280	3384	3490	3707
	S	9,40	9,48	9,55	9,63	9,70	9,87	10,02	10,17	10,32	10,59
0,008	i	2918	2957	2997	3037	3077	3177	3280	3384	3490	3707
Í	S	9,08	9,16	9,23	9,31	9,38	9,55	9,70	9,85	10,00	10,27
0,012	i	2918	2957	2996	3036	3077	3177	3280	3384	3490	3707
	S	8,89	8,97	9,05	9,12	9,19	9,36	9,52	9,67	9,81	10,08
0,02	i	2918	2957	2996	3036	3077	3177	3280	3384	3490	3707
	S	8,66	8,74	8,81	8,88	8,95	9,12	9,28	9,43	9,58	9,84
0,1	i	2914	2954	2993	3033	3074	3175	3278	3382	3488	3706
	S	7,91	7,99	8,06	8,14	8,21	8,38	8,54	8,69	8,33	9,10
0,6	i	2891	2933	2975	3017	3059	3164	3270	3376	3483	3701
	S	7,05	7,14	7,22	7,29	7,37	7,54	7,70	7,86	8,00	8,27
1,0	i	2874	2918	2962	3005	3048	3156	3263	3370	3479	3698
	S	6,79	6,88	6,96	7,04	7,12	7,30	7,46	7,62	7,76	8,03
2,0	i	2821	2875	2924	2972	3019	3134	3246	3357	3468	3690
	S	6,39	6,49	6,59	6,67	6,76	6,05	7,12	7,28	7,43	7,70
3,0	i	943,5	2823	2882	2937	2988	3111	3229	3343	3456	3682
	S	2,51	6,23	6,34	6,44	6,53	6,74	6,92	7,08	7,23	7,51
10	i	945,8	1038,3	1134,1	1234,5	1342,2	2920	3093	3239	3372	3621
	<i>S</i>	2,50	2,68	2,87	3,05	3,24	5,94	6,21	6,42	6,60	6,90
12	i	946,6	1038,7	1133,9	1233,7	1340,0	2844	3049	3206	3347	3603
	S	2,50	2,68	2,86	3,05	3,24	5,76	6,07	6,30	6,49	6,80
14	i	947,3	1039,1	1133,8	1232,9	1338,0	2750	3000	3172	3321	3585
	<i>S</i>	2,49	2,68	2,86	3,04	3,32	5,55	5,94	6,19	6,39	6,72
16	i	948,0	1039,5	1133,7	1232,2	1336,2	2612	2945	3137	3294	3567
	S	2,49	2,67	2,85	3,04	3,22	5,30	5,82	6,09	6,30	6,64
24	i	950,9	1041,3	1134,0	1230,3	1331,2	1625	2638	2971	3174	3493
	S	2,48	2,66	2,84	3,01	3,19	3,68	5,24	5,72	6,06	6,39
30	i	953,3	1042,9	1134,7	1229,0	1329,0	1608	2155	2816	3073	3434
	S	2,47	2,65	2,82	3,00	3,17	3,64	4,48	5,45	5,80	6,24
,										1	

Числа слева от ступенчатой линии относятся к воде. Значения всех физических величин даны в единицах системы СИ.

Таблица П7

Марка ком- прессора (в скобках указанно старое обо- значение	Тип	Число цилиндров	Ход поршня s в мм	Циаметр цилиндра D в мм	Скорость вращения коленчатого вала n в об. мин.	Объем описывае- мый поршнями v _h в м ³ /ч	Холодо водите: при ста ном реж	опроиз- пьность андарт- киме Q ₀ л	Потребляемая мощ- ность N _e в квт	Мощность электро- двигателя в квт	Габаритные раз- меры в мм
AB22	A	2	70	80	960 1440	40,5 60,8	19 000 27 000	16 500 23 500	5,25 7.9	-	810X1130X760
АУ45	A	4	70	80	960 1440	81,0 121,5	38 000 54 000	33 000 47 000	10 14,9	-	660X625X710
АУУ90	A	8	70	80	960 1440	162 243	75 000 110 000	65 000 95 000	19,2 29	-	1100X910X820
, AB100	A	2	130	150	720 960	198 264	87 000 116 000	75 000 100 000	25 34	- 40	1050X760X1190
АУ200	A	4	130	150	720 - 960	396 528	174 000 232 000	150 000 200 000	48 67	- 75	1370X1315X1100
АУУ400	A	8	130	150	720 960	792 1056	348 000 465 000	300 000 400 000	100 139	- 160	1660X1560X1320
AO600 AO1200	AO AO	2 8	220 220	280 280	500 500	1585 3170	665 000 1300 000	575 000 1150 000	190 390	320 630	3310X4150X17550 4500X4420X1800

Компрессоры холодильных машин

Таблица П8

Хладагент	<i>Q</i> ₀ , кВт	t, °C	t_k , °C	<i>t</i> _{<i>n</i>} , °C
Аммиак	500	-30	20	10
Хладон R-12	50	-15	30	5
Аммиак	400	-25	25	5
Хладон R-12	150	-20	30	15
Аммиак	600	-25	25	10
Хладон R-12	100	-30	20	10
Аммиак	300	-25	25	5
Хладон R-12	75	-20	20	5
Аммиак	550	-30	30	10
Хладон R-12	80	-15	20	5

Теплофизические свойства холодильных агентов

Оглавление

Введение	3
1. Общие указания	3
 Термодинамика газовых циклов 2.1. Расчет циклов двигателей внутреннего сгорания 2.2. Расчет циклов газотурбинных установок 	4 4 16
 Термогазодинамика потока. 3.1. Истечение реального газа из сопел. 3.2. Методика расчета сужающегося сопла. 3.3. Методика расчета сопла Лаваля. 	22 22 23 25
 4. Циклы паротурбинных установок 4.1. Расчет цикла Ренкина	29 30 32
установки	35
5. Циклы атомных электростанций	37
6. Циклы холодильных установок	40
7. Примеры решения задач	47
Литература	57
Приложение	59

Учебное издание

ДОБРЕГО Кирилл Викторович ЕСЬМАН Руслан Иосифович ИОКОВА Ирина Леонидовна

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

Учебно-методическое пособие для студентов специальностей 1-43 01 05 «Промышленная теплоэнергетика», 1-43 01 04 «Тепловые электрические станции», 1-43 01 08 «Паротурбинные установки атомных электрических станций», 1-53 01 04 «Автоматизация и управление энергетическими процессами»

> Редактор Т. Н. Микулик Компьютерная верстка А. Г. Занкевич

Подписано в печать 03.02.2015. Формат 60×84 ¹/₁₆. Бумага офсетная. Ризография. Усл. печ. л. 4,30. Уч.-изд. л. 3,36. Тираж 100. Заказ 1.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.