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1 HEPEYEHb MATEPHUAJIOB

DJEKTPOHHBIN y4eOHO-METOIMYCCKUN KOMILICKC 10 yueOHou auciuiuimHe «Mathematics1» coctout u3 cieayronux pasaeinos:

— KpaTKUX TEOPETUIECKUX MATEPUAJIOB M0 KypCy MaTeMaTHUKU MIEPBOTO ceMecTpa 00yUeHus;

— MaTepHaIoB JUIsl MPOBEACHUS MTPAKTUYECKUX 3aHITHH 10 y4€OHOUN TUCHUILINHE;

— MaTepHaJIOB JUIs TEKYIIEW U UTOTOBOM aTTECTALUH;

— BCIIOMOTaTEJIbHBIX MAaTEPUAJIOB.

Teopetnueckuii paznen DYMK conepxut matepuaisl s TEOPETUUECKOTO U3yUEHUsl yueOHON AUCIUILIIMHBI B 00bEME, YCTaHOB-
JIEHHOM y4€OHBIM IUIaHOM 1O CHEIHATbHOCTH.

[IpakTuecknii pasnen OYMK conepkuT MaTepuaisl 11 IPOBEACHUS TPAKTUUECKNX 3aHATUN B Ay IMTOPUHN U 3aJaHUM 1T CaMO-
CTOSITEJIBHON PabOTHI.

Paznen xoutpons 3nanuii DY MK conepkut Marepuanbl TEKYIIEH U UTOTOBOM aTTECTAIMU, TTO3BOJISIIOIIME ONPEICIINTh COOTBET-
CTBHE PE3yJIbTATOB YUeOHOH JAeATETbHOCTH 00yUYaroIIMXCcsl TpeOOBaHUSIM 00pPa30BaTENIbHBIX CTAHIAPTOB BHICIIETO OOpa30BaHUs U
y4eOHO-ITPOrpaMMHOM IOKyMEHTALIMH, U MIPEICTAaBIICH TUIIOBBIMU pacueTaMu 10 TeMaM y4eOHOM TUCIUIUIMHBI U TecTaMu. B pas-

ACJIC TCCTOB IIPHUBCACH IIPUMCEP UX PCHICHHUA U PAa3MCIICHBI OTBCTEI KO BCCM TCCTAM.

Bcnomorarensnsiit pazaen 9YMK coaepkut nporpamMmy AUCIUTIINHBI, YK3aMEHAIIMOHHBIE BOMPOCHI, ITepeyeHb Y4eOHO-METOI1-

YECKUX MOCOOUH, peKOMEHIYEMBIX K HCTOJIb30BaHHUIO B 00pa30BaTEILHOM TIPOIecce.



2 HOACHUTEJIbBHAS 3AIINCKA

OYMK npenna3HadeH Ui U3ydeHus: AucUIumHbl « Mathematics» 1iist HHOCTpaHHBIX CTYJICHTOB, BIACIOIINX aHTIUHCKIM SI3bI-

koM. OH coJiep>KUT HA0OP METOJUYECKUX MAaTePUaIOB 10 3TOM TUCIUILINHE.
OYMK cocTOUT U3 YETBIPEX YaACTEM.

Teopemuueckuti pazoen COACPKUT HAOOP METOIUYECKUX MATEPUAJIOB 110 ATOMY IIPEAMETY: PEKOMEHAIUN CTYIEHTY IJisi paOOThI
C IUCHUIUIMHOM, KPATKUX TEOPETUYECKUX MATEPUAIOB, MOCBSIIEHHBIX U3JI0KEHUIO B HATJIAIHOM BHJIE€ OCHOBHBIX ONpPEICIICHH,

CBOMCTB, (JOpPMYJI U TEOPEM, COMPOBOKIAIOIINXCS TOAPOOHBIMU TPUMEPAMH.

lpaxmuueckuii pazoen COAEPKUT MPAKTUKYM O TUCIUIUIMHE, COCTOAIIUN U3 MAaTEPUAIOB ISl MPOBEACHUS ay IUTOPHBIX 3aHSATUN

110 MaTCMaTHKC. Kam,uoe 3aHATHC COACPIKUT 3aaa4u IJIs I[OM&IIIHGfI pa6OTbI C OTBCTaMHM.

Paszoen KOHmMpOoJA 3HAHUL COACPIKUT THUITOBBLIC PACUYCTBI, TCCThI IJIS1 OpraHU3alri TCKYIICTO KOHTPOJIA 3HAHUU CTYACHTOB U KOH-

TpoJibHbIE paboThI (30 BapuaHTOB) JIJIsl CTYJIEHTOB 3a0YHOTO OTACIICHHUS.

BcnomocamenvHulti pazoen COAEPKUT MPOrpaMMy JTUCIMILIMHBI, TIEpeUeHb SK3aMEHAIIMOHHBIX BOIPOCOB, CIIMCOK PEKOMEHIye-
MOM.

Koncnexr nexiuit B 9YMK npencrasnser co6oit runepTekcToBbiil pdf-10KyMEHT, TPEI0CTaBISIONIUN BO3MOKHOCTh HABUT AU
10 COJIEp>KaHMIO JOKyMeHTa. Bce 3a/1aun B MpakTUKyMe CHaOXeHbI OTBETaMHU, KOTOPbIE€ MOTYT ObITh MCMOJb30BaHbI JJIsI CaMo-
KOHTPOJISl. B KOHIIE Ka)KI0T0 pa3jiena npakTUuKyMma npeasioxeHbl 30 BApuaHTOB TUMOBBIX PACU€TOB, MPEJHA3HAYEHHBIX I CAMO-
CTOSITEJILHOTO BBIMOJHEHUsI. TeCTOBBIC 3aJJaHUsI TIPU TEKYIIIEM KOHTPOJIE MOTYT OBITh BBITIOJIHEHBI KaK B ayIUTOPUHU, TaK U B KOM-

HI)IOTepHOfI CUCTEMC TCCTUPOBAHUA.



3 OBIIIUE PEKOMEHJIALIMU CTYJAEHTY
110 PABOTE HAJI JUCUMUILIMHON « MATEMATHKA»

OcHoBHBIME (popMaMu 00yUEHUS CTYCHTA SBISIOTCA JIGKLIUH, IPAKTUYECKHE 3aHATHS U CaMOCTOSTENbHAs paboTa Ha/l y4eOHBIM MaTepHaIoM, KOTOpas
COCTOMT U3 CIEAYIOLIMX ITAlOB:

— U3Y4EHUS TEOPETUUECKOro MaTepualia o yyeOHUKaM, y4eOHbIM TOCOOMSIM, KOHCIIEKTaM JIEKLIUH U T.11.;

— pelLIeHHUs 3a1a4 U yIIPa)KHEHU;

— BBITIOJTHEHHUSI KOHTPOJIBHBIX padoT.

PaCCMOTpI/IM HCKOTOPLIC U3 HUX.

Padora ¢ yueOHUKOM

1. U3ydas MmaTepuai 1o y4eOHUKY, K CIEAYIOIIEMY BOIIPOCY CIEIYET MEPEXOJUTh TOJBKO MOCIE MPAaBUWIHBHOTO TOHUMAHHUS MPEIBITYIIETO, TPOU3BOIS
CaMOCTOSITENIbHO Ha Oymare Bce BHIYMCIEHUS (B TOM YHCIIE U T€, KOTOPbIE paJy KPaTKOCTH OMYIIEHbI B yU€OHUKE) U BBITOIHSS UMEIOLMECs B yUeOHUKE
YEPTEXKH.

2. Oco0oe BHMMaHUE clieayeT oOpallaTh Ha ONpe/ieIeHue OCHOBHBIX MOHATUH. CTyIEHT TOJIKEH MOJPOOHO pa3duparh MpUMEpPhl, KOTOPHIE MOSICHIIOT
TaKHle ONPEENICHNs, U YMETh CTPOUTH aHAJIOTHYHbIE IPUMEPHI CAMOCTOATEIBHO.

3. Heo6xoa1MO MOMHUTB, UTO Ka)KJasi TeOpeMa COCTOUT U3 MPEIINOJIOKEHNN U yTBepkIeHus. Bee mpeanonokeHus 10JKHBI 0053aTeNbHO HCTIO0NIb30-
BaThbCs B JOKa3aTeslbcTBe. HyKHO TOUHO MpEeACTaBIATh TO, B KAKOM MECTE JI0KA3aTeIbCTBA HCIIOIB30BAHO KaX10€ MPeAIosoKeHue TeopeMsl. Ilonezno
COCTaBIISATh CXEMY JI0Ka3aTeNbCTB TeopeM. [IpaBuiIbHOMY MOHMMAHUIO MHOTHX TE€OPEM IOMOTaeT pa3doop MpuMepoB MaTeMaTHUECKUX 00BEKTOB, 00Ja-
JAIOIIMX U HEe 00J1aJaloIIX CBOWCTBAMH, YKa3aHHBIMU B IIPEIIOIOKEHUAX U YTBEPKIACHHUSIX TEOPEM.

4. ITpu n3yyeHun maTepuaia no yueOHUKY I0JIE3HO BECTH KOHCIEKT, B KOTOPbII PEKOMEHIYeTCsl BIIMCHIBATh ONpeeieHus, GOPMYIUPOBKH TEOPEM,
¢dbopmybl, ypaBHeHUS U T.4. Ha monsx ciemyer oTMeyarh BONPOCHI, BBIIETICHHBIE CTYACHTOM JUIS MTOJyYeHHs MMChbMEHHOM WM YCTHOM KOHCY/IbTAlluU

npenoaaBaTeis.



5. IIpouecc nucbMeHHOTO 0OopMIIEHHS PaOOTHI CTy/IEHTa C Y4eOHUKOM MMEET HUCKIIIOUUTEIbHO BaXKHOE 3HaYCHHE. 3aliCH B KOHCIIEKTE JTOJIKHBI OBbITH
ClIeJIaHbl YUCTO, aKKYPaTHO U PACIOI0KEHBI B ONPEIeICHHOM HOpsIKe. Xopollee BHENIHee 0QpOpMIICHHE KOHCTIEKTa [0 U3yYEeHHOMY MaTepHaiy MpHu-
y4aeT CTyIeHTa K He0OX0MMOMY B paboTe MOPSAAKY U MO3BOJISET eMy H30eKaTh MHOTOYHCICHHBIX OIIUOOK, KOTOPBIE MTPOUCXOIAT U3-3a HEOPEKHBIX,
OecropsII0UHbIX 3aMucel.

6. BeiBOo/1b1, TONTy4YeHHBIE B BUE (HOPMYII, pEKOMEHAYETCS B KOHCIIEKTE MOAYEPKUBATh UM 00BOJUTH PAMKOM (3KeIaTeIbHO YepHIJIaMHU JIPYToro 1IBETa),
9TOOBI MPU NEPEUUTHIBAHUN KOHCIIEKTA OHM BBIICISIUCH U JIy4Ile 3alOMUHAIKUCH. OMBIT MOKa3bIBAET, YTO MHOTUM CTYJIEHTaAM IOMOTaeT B paboTe
COCTaBIICHHE JINCTA, COJEPIKAIIETO BAKHEWIIINE U HanboIee 4acTo ynorpediseMble GopMyibl Kypca. Takoil JucT He TOIBKO IOMOTAeT 3allOMHUTD (op-
MYJIbI, HO U MOXKET CIIYKUTh IIOCTOSHHBIM CIIPABOYHUKOM IS CTYJEHTA.

Crmcok peKOMCHILOBaHHOfI JIATCPATYpPhI HIPUBCACH B KOHIIC MECTOAUYICCKUX YKa3aHPII>'I.

Pemenue 3apau

1. Urenune yuyeOHMKA JOKHO COMPOBOXKIATHCS PEIICHUEM 3314, ISl YeTO PEKOMEHIYETCS 3aBECTH CIIEHUATIbHYIO TeTPab.

2. [Ipu pemienun 3amaq HY’)KHO OOOCHOBATh Ka)IbIi 3Tall PELICHUS, UCXO U3 TEOPETUUECKUX MONOKEHHUH Kypca. ECu cTyAeHT BUIUT HECKOIBKO
MyTel pelieHusi, TO OH JOJHKEH CPaBHUTh UX M BBIOPATh caMblil Tydminii. Jlo Hauana BEIYMCICHHUH MOIE3HO COCTaBUTh KPAaTKUM TUTaH PEIICHUSI.

3. Pemenus 3a7a4 ¥ IpUMEPOB CIIEAYET U3JIaraTh MOJAPOOHO, BEIYUCICHHS pacrojiaraTh B CTPOTOM TMOPSIIKE, OTAEISAS BCTIOMOTaTeIbHbBIC BEIUUCICHUS
OT OCHOBHBIX. UepTEKH MOKHO BBITIOTHATE OT PYKH, HO aKKypaTHO M B COOTBETCTBUHU C JAHHBIMH yCIOBUsIMU. Ecnu uepTex TpedyeT 0co00 TIaTeIbHOTO
BBITIOJTHEHUS (HampuMep, mpu rpaduueckoil mpoBepKe pelIeHus, MOTYYeHHOTO IMyTeM BBIUMCIICHHI), TO CIEeAyeT MOJIb30BaThCs TUHEHKOM, TpaHCIop-
THUPOM, JIEKAJIOM M YKa3bIBaTh MacIITa0.

4. PermeHne K01 3a1a4ul JOKHO TOBOJAUTHCS IO OTBETA, TPEOYEMOTro YCIOBHEM, U, TTIO0 BOBMOXKHOCTH, B 001IIeM BHE C BEIBOJAOM (POPMYIBL. 3aTeM
B MMOJTYyYEHHYIO (DOPMYITY TTOJACTABIISIFOT YMCIIOBBIE 3HAUYCHUS (€CIIM OHU JaHbl). B MpOMeEKyTOYHBIX BRIYUCICHUIX HE CIIEAYeT BBOJAUTH MPUOTMKECHHBIC

3HaA4YCHUA KOpHeﬁ, quciaa T T. 1.



5. IlosyueHHBIH OTBET ClIeyeT NPOBEPSATH CLIOCO0aMHU, BBITEKAIOIIMMU U3 CyIlecTBa JaHHOH 3anaun. Eciu, Hanpumep, pelanach 3aada ¢ KOHKPETHBIM
(U3NYECKUM MM TEOMETPUUECKUM CO/ICPIKaHUEM, TO IOJIE3HO, MPEXKJIE BCEro, MPOBEPUTH Pa3MEPHOCTD MOIY4YeHHOro oTBeTa. [lone3no takxke, eciu
BO3MOYKHO, PEIINTH 33/1a4y HECKOJIBKUMH CIOCO0AMH U CPAaBHUTH MOJTyYCHHBIE PE3yIbTATHI.

6. Pemrenne 3aaa4 OIp€ACICHHOIO THUIIa HY>KHO ITPOAO0JIKaThb A0 HpI/IO6peT€HI/I${ TBEPABIX HABLIKOB B UX PCIICHUH.



CamonpoBepka

1. ITocne uzyueHus ONpeAeICHHON TeMbl IO Y4eOHUKY U PEIICHHUs TOCTaTOYHOTO KOJMYECTBA COOTBETCTBYIOIINX 3a/1a4 CTYJCHTY PEKOMEHIYeTCs BOC-
MIPOU3BECTH IO MAMSTH ONPENIEICHNUs, BBIBOJIBI (hopMyI, GOPMYITHPOBKU U T0OKA3aTEIbCTBA TEOPEM.

B ciydae He0OXO0IMMOCTH HAJIO €llie pa3 BHUMATENIBHO pa300paThesi B MaTepuane yueOHUKa, pellnTh psjl 3a/1a4.

2. lHorna HeJOCTaTOYHOCTh YCBOGHUS TOIO MJIM MHOTO BONPOCA BBIACHAETCS TOJIBKO IPU M3YYEHUH JalbHEHIIero Marepuana. B atom ciyuae Hazno
BEPHYTHCS Ha3aJ U MIOBTOPUTH TUIOXO YCBOEHHBIN pa3jed.

3. BaxXHBIM KpUTEpUEM YCBOCHHUSI TEOPUU SIBIISIETCA YMEHUE pellaTh 3a/1a4M Ha NpoilieHHbI MaTepuan. OgHako 3/1ech clieAyeT NpeaocTepeyb CTyAeHTa
OT BE€CbMa PACHPOCTPAHEHHOM OIIMOKH, 3aKIIF0YAIOLIeHcs B TOM, YTO OJIarornoylyyHoe pelieHne 3ajad BOCOPUHUMAETC UM KaK IIPU3HAK YCBOEHUS T€O-
pun. YacTo npaBUIIbHOE PELICHUE 3a/laui [10JIy4aeTcs B pe3yJsibTaTe NPUMEHEHUSI MEXaHUUECKHU 3ay4yeHHbIX (opMyll, 6e3 NOHUMaHMs CyILECTBa Jela.

Mo:xHO CKa3aTb, YTO YMCHHUC pCHIATD 3a4a4YM ABJIACTCA HGO6XOI[I/IMI>IM, HO HC JOCTATOYHBIM YCJIOBHUEM XOPOUICTO 3HAHUA TCOPHUU.

Koncyabranuu

1. Ecniu B mpouiecce paboThl HaJl U3y4EeHHEM TEOPETUYECKOT0 MaTepualla WK P PeLIeHUH 3a/1a4 Y CTYJeHTa BO3HUKAIOT BOIPOCHI, pa3pelINTh KOTOPbIE
CaMOCTOSITENILHO HE y/1aeTcsl (HEsICHOCTh TEPMUHOB, (POPMYIHPOBOK TEOPEM, OTAENIBHBIX 33/1a4 U Jp.), TO OH MOXET 00PaTUTHCS K MPEToAaBaTeIo 1Jis
MTOJIy4EHUS OT HETO MMCbMEHHOM WJIM YCTHON KOHCYJIBTAllUH.

2. B cBoux 3amnpocax CTyIEHT JI0JKEH TOUYHO yKa3aTh, B YEM OH MCIBITHIBAET 3aTpyAHEeHHE. Eciu oH He pa3oOpaicst B TEOPETUUYECKUX 00BsICHEHMUSIX,
WIN B JI0KA3aTeJIbCTBE TEOPEMBI, WM B BbIBOJE (OPMYJIBI MO YUEOHHKY, TO HY)KHO YKa3aTh, KaKOH 3TO y4eOHHUK, IO/l €ro U3/1aHus U CTpaHMIly, T1e
PacCMOTPEH 3aTPYAHSIOUN €r0 BOIIPOC, U YTO UMEHHO €r0 3aTpyAHseT. ECM CTyIeHT UCIBITBHIBAET 3aTPYIHEHHUE IIPU PEILICHUH 331a4U, TO CJIEAYET
yKa3aTh XapaKTep 3TOT0 3aTPyIHEHHUs, IPUBECTH MPEAIIOIAraeMblii IUIaH PEIICHMUS.

3. 3a KoHCynbTaLUeEN cieayeT o0paaThCs U MPU COMHEHUH B MPAaBUIILHOCTU OTBETOB Ha BOIIPOCHI JIJIsl CAMOIIPOBEPKHU.



Kpartkue coBeTbI-peKoOMeHIANNH CTYyIeHTaM 110 OPraHu3alnuu

cBoeil yueOHO-1IpodecCHOHATBHOM 1eSITeJIbHOCTH B X0/1¢ BY30BCKOI'0 00yUeHust

BerynurenpHble 5K3aMeHbI 103311, U Teniepb Bel MoxkeTe ropno 3asButh: «S — crynent BHTVY!»

Kazanoce 0bl, MOXKHO B3I0XHYTb C 00JIETYEHUEM — CTPAaXH U BOJIHEHUS 10331, a BIEPEaAN — HOBasl M MHTEPECHAs CTyAeHuYecKas ku3Hb. Ho pacciab-
JATHCSA €111€ PaHO — UIMEHHO IepPBbIi Kypc NMpo(ecCHOHaNbHOT0 00yueHUs SIBJIETCSI HauboJiee TPy JHBIM.

BynbTe roToBBI K TOMY, 9TO 00y4eHHE B MPO(PECCHOHATBHOM yUeOHOM 3aBEICHUH CYIIECTBEHHO OTIMYACTCS OT 00yUeHUs B IIKOJIE: ydeOHas Harpy3ka
OoJbIIIe M IPEMETHI CIIOKHEE; OT CTYJIEHTa TPeOyeTCss MaKCUMYM CaMOCTOSITEIbHOCTH M OTBETCTBEHHOCTH B M3YUEHHH JAUCIUIUINH; JJISl YCTICITHOTO
00y4yeHHs: He0OX0IMMBI TaKHe KauyecTBa KaKk OPIraHU30BAaHHOCTb U PAa3BUTBIA CAMOKOHTPOJIb.

Bama ycneBaeMocTs, a, ciieioBaTeabHO, M YpOBeHb Bariel moaArotoBku kak Oy yniero crenualucTa BO MHOIOM 3aBUCUT OT HEPBBIX MECSIEB MpeObl-
BaHUs B yHUBepcuTeTe. CyMenu aJaliTUPOBAThCS — yCIEBAECTE, HE CYMENIH — OTCTAETe.

Haubonee oOmmMu mpuarHaMK OTCTaBaHUSI MHOTHX CTYICHTOB SIBIISIETCS HEOPTaHU30BaHHOCTh, HEYMEHHE pacpe/IeNisiTh pabodee Bpems Uik CaMOCTO-
ATEJNBbHOM MOATOTOBKH, HEIOCTaTOYHAsI MOJTOTOBICHHOCTh B CPEeIHEH LIKOJe, HEyMeHHe OBICTPO MPHUCIOCAOINBATECS K HOBBIM (hopMaM U METOAaM
BY30BCKOI'0 O0y4YeHHs, YBICUEHHE JPYTUMH BUJIAMH JESITEIbHOCTH, OTCYTCTBUE PETYISIPHOTO KOHTPOJIS HaJl XOJ0M Y4€eObl.

Ilepsoxypcruky npeocmoum.

Oco3Hatb cebs1 B HOBOM KadecTBe («S — cTymeHT»).

Hauwmnaercs Bce ¢ TOT0, 4TO MOJIO/ION YeIOBEK ONIYIIAeT YTO, IIOCTYIHB, CICNIal YTO-TO OYCHb BAKHOE, TTOTHSJICS Ha HOBYIO KU3HEHHYIO CTylneHb. Ho,
MOTIaB B CTYACHUYECKOE COOOIIECTBO, MOHUMACT, YTO OH HHYEM HE BBIICISICTCS — BCE OJHOTPYIITHUKH B OJMHAKOBOM IOJIOKEHUU. Bech aBTOpPHUTET,
3apabOTaHHBIN B IIKOJIE, MAJIO KOTO HHTEPECYET, U MPEACTOUT 3asBIATH O cebe 3aHOBO, IPEXkKAE YeM TeOsl HAaUHYT Cephe3HO BOocpuHUMAaTh. Ho B 31O
CUTYaIlUU €CTh U TOJOKUTEIBHBI MOMEHT — JJIs1 YYEHUKOB, YbH YCIIEXU B IIKOJE OBLTH HE OJIECTAIIH, 3TO MPEeKpacHas BO3MOXKHOCTh HauaTh BCE C

YUCTOTO JINCTA U MIPOSIBUTH CE0SI C JIUIIIeid CTOPOHBI.

Bautecs B CTy,[[CH‘-ICCKI/Iﬁ KOJIJICKTHUB.

Co BPEMCHEM Ka)I(JII)H\/’I 3aiiMeT CBOIO HHUITY B KOJIJICKTUBE, HO ITOKAa HUKTO HUKOI'O HE 3HACT.



Haiitu 001mmii sI36IK ¢ TperogaBaTeIsIMU.
Wx MHOTO U BCe ¢ pa3HbIMH TpeOoBaHusMU. Ho B 01HOM TOUKa 3peHHS MperoiaBaTeNieii COBNAIaeT: YCIEUIHbIN CTYIEHT — CAMOCTOSATENIbHBIA U OTBET-

CTBEHHBIN.

Pazobpatbcest B HOBOI cuTyary 00y4eHHs U MPUBBIKHYTh K HEH.

IInan deticmeuii Ha nepsoe epemst (00 Hauana yueowl):

— Y3HaiiTe HOMEep TPYIIIbI, B KOTOPYIO BbI 3auncieHsl;

— 3aBeJIUTe OJIOKHOT 7151 BakHOUM uH(popmarmu. [lepenuiinte B HEro pacnycanue 3aHATUM;

— MIPUHECHUTE C OO0 PYUKH Pa3HBIX IIBETOB IS YA00OCTBA BEICHUS KOHCIIEKTA M HECKOJIBKO YHCTHIX TOJICTBIX TETPaAeH (B 3aBUCIMOCTH OT KOJTMYECTBA
y4eOHBIX AUCUHUIUIMH B 3TOT JCHB);

— IPUJIMTE HEMHOTO paHbIIle Hayana 3aHATHIl, 4TOOBI HE Crella OMPEAeUTHCS C PACIIONIOKEHIUEM HYKHBIX ayTUTOPUH B y4eOHBIX Kopmycax. OObIYHO
HOMepa KaOMHETOB TPEeX3HayHbIe — MepBas [U(pa 03HAYAET ITAXK, a MOCIETYIOIINE — MOPSAKOBBIA HOMEp ayAUTOPHH.

Tunuunvle owudOKU CMYy0enmo8-nepeoKypCHUKOE.

1. [Iporynsr.

Kaxercs, npomycTuiib OfHy-/1Be-TpU Napbl 1 HUYEro He notepsems. Ho 3To onacHoe noxHoe omymienue! B oauH «mpekpacHblii» MOMEHT YBHUIUIIIb,
YTO YIYCTHJI MHOTO M IOTHATh OCTAJIbHBIX OyJIeT oueHb TpyaHO. [IoMHHTE — yclieX CKIIaAbIBaeTCs U3 KEAHEBHBIX YCHIINN!

2. OruasHue.

He nacyiite nepen tpyaHoctsamu! Kak Obl Tpy/1HO HE NPUXOIUIIOCH, HE onyckaiite pyku! He crian 4Tto-To ¢ mepBoro pasa — HoJAroToBbCS K Iepecaaye.
A xT0 ckazan, yto Oynet nerko?! Tspkeno B ydeHuu, Jierko B 6oro!

U nomnume, umo nepgwviii 200 00yUeHUs — CAMbIL BAIHCHBIU, MAK KAK UMEHHO 8 MO 8PeMs NPOUCX0OUmM (POpMUpOo8aHue OCHOBHbIX YUEOHbIX HABLIKOS,
3axkaaoxka 6azoevix 3nanuil. Om 3moeo 3a8Ucum yCnewHocms 00yueHUs 8 NPOPeCcCUOHAIbHOM YUeOHOM 3a8edeHul 8000uye.

Taxum 00pa3oM, Ha TEPBOM Kypce Hy)KHO KaK MOYKHO OOJIbIIIE CHIT M BpEMEHH OTAaBaTh y4eOe, 9TOOBI B MOCIEAYIONIEM HMETh BOZMOKHOCTh CITOKOMHO,

6e300J1e3HEHHO coYeTaTh yuedy C JMUHOU KHU3HbIO, JOCYTraMU U IPYTMMHU cepamu *KU3HU. Bam ycrex B Bammx pykax!



O0Houl u3 8e0yWUxX OUCYUNTUH eCMECMBEHHOHAYYHO020 YUKIA, KOTOPYI0 BaM npencTonT u3ydaTs Ha IEPBOM M BTOPOM KYPCAX, AGIAENCA MAMeMamuKa.
Omna coznaer 6a3y Ui CrienuaIbHOM MOJATOTOBKH, Ja€T BO3MOXKHOCTh TBOPUYECKH pelaTh Mpo0IeMbl COBPEMEHHOTO TPou3BoIcTBa. Kpome Toro, Boopy-
’KEHHE HAaBBIKAMU CaMOCTOSITEIIbHON TBOPUECKOM pabOThl M caMOOOpa30BaHUS POUCXOAUT OCOOCHHO aKTHBHO B IPOLIECCE U3YUCHUsI MaTeMaTuku. O0b-
SCHAETCSA 3TO TEM, YTO CPEAM N3y4aeMbIX BaMu Ha mepBoM Kypce JUCLUIUIMH MaTeMAaTHKa 3aHUMAET 3HAYUTEIbHYIO YaCTh BPEMEHH, IIPUYEM JUIsl OBJIA-
JIeHUs €10 HeoOX0IuM OOJIBIION U LieNeyCTPEeMIICHHBIN TpyA, TPeOYIOTCSl YMCTBEHHbIE U BOJIEBBIE YCUIIMS, KOHLIEHTPALUsl BHUMAHUS, aKTUBHOCTb U
CHCTEMaTUYHOCTbh, Pa3BUTOE BoOOpaxkeHHe. BoT mouemy npu o0ydeHnH MaTeMaTHKE MOCIIEI0BAaTEIbHO U INTAHOMEPHO (OPMHUPYIOTCS Y CTYACHTOB pa-
[IUOHAJIBHBIC IPHEMbI Y4€OHON JeSITeIbHOCTH, YMEHUS U HABBIKA YMCTBEHHOT'O TPYy/ia: IUTAHWPOBAaHUE CBOEH pabOTHI, TIOMCK PAllMOHAIBHBIX ITyTEH ee
BBITIOJIHEHU S, KPUTUYECKAs OLIEHKA PE3YJIbTaTOB.

OcnosHblmu hopmamu 0Oyuenus mamemamuke B yHUBEPCUTETAX ABISIOTCS IeKYUU, NPAKMudecKue 3aHsamus, CAamMoCcmosamenbHas paboma Hao y4eOHbiM

mamepuaiom, KOTopass COCTOUT U3 CICAYIOIIUX 3TAIllOB:
HU3YUCHUS TCOPCTUICCKOIO MaTCpHralia Imo y‘le6HI/IKaM, y‘IC6HLIM HOCO6I/I$IM, KOHCIIEKTaM JIEKIIUH 1 T.A.,
peuIceHusd 3a1a4 U YHpa)KHeHI/Iﬁ Ha INPAKTUYCCKUX 3aHATHAX,

BBITIOJIHEHU S JOMAIITHUX SaI[aHPIfI, THUIIOBBIX PacyYCTOB.
3aBepH_IaIOH_[I/IM 9TallOM U3YYCHUA OTACIIBHBIX qacTel KypCa MaTCMATHKHU SABJISICTCA Cla4a 3a49€TOB U 5K3aMCHOB B COOTBETCTBUU C y‘{C6HBIM IIJIaHOM.

Cosembl no KOHCNEeKmupoeaHuio ﬂeKl/ﬂ/tlZ.

COI[ep)KaHI/IC JCKIIMHU 3aIIUIIHNTEC. 3amuch IOMOXKET BaM OCO3HATh IJIaH U JIOTUKY H3JIOKCHUA, OCMBICIIUTL MAaTCpUAl U COCPCAOTOUUTL BHUMAHUC Ha
OCHOBHBIX BOIIPOCax. Hannume koHCHEKTa JIEKIIUHM MO3BOJIUT BaM Jy4qmaie pa306paTLc51 B HOBOM Marcpuajic, [0AyMaTb U paClIMpruTh €ro ¢ NOMOIIIBIO

yueOHOM TUTepaTyphl.

3amuchIBaiiTe UL CaMOe TJIaBHOC, HC CTPECMHUTCCH 3a(I)I/IKCI/IpOBaTB BCE CJIOBO B CJIOBO. HpaKTI/I‘{eCKI/I MOJIY4acTCsd TakK, 4YTO Bbl, HC YCIICB 3allUChIBATDH
AOCJIOBHO, ACTACTE MPOIYCKHU, Y BaC MOABIIAIOTCA IMYCThIC MECTA U, TAKUM 06pa30M, YIIYCKa€TC CaMO€ I'JIaBHOC. Takas 3amuch JHUIICHA JTOTHYECKOTO

CMEICIIa, 4 TOTOMY HETOJHA JJI1 UCITOJIB30BaHM.

He CTPEMUTECH 3allMChIBATE COACPKAHUEC JICKIUU KPAaTKO, HACTOJIBKO KPAaTKO, YTO Bbl YIIYCKACTE IIPHU 3TOM OCHOBHBLIC ITOJIOKCHUS.



He OrpaHHqHBaﬁTeCB 3aIlIMChI0 3aroJIOBKa, IIJIaHa U peKOMeHﬂyeMOﬁ JIMTEPATYPBHI. Takwue 3amucu He 0T06pa>1<a}oT OCHOBHOI'O COACpKaHUA JICKIHUU, U

IIOJIB30BAaTbCA MU HCBO3MOXKHO.

MBpICIb MperoaBaTelis u3jaraiiTe CBOMMH CIoBaMH. Takasi (hopma 3armmcy O3BOJIMT BaM HE TOJIBKO TIOHSTh YCIBIIIAHHOE, HO M YCBOUTH ero. OcMBbIC-
TuBas, mepepadaThiBasi MOCTYIAIONTYI0 HHPOPMAIIHIO, BBl MOKETE COXPAaHUTh YCTOMYNBOE BHUMAHUE U MTPEIOTBPATUTH MEXAaHUYECKOE BO3ICHCTBUE.
Ipu xoncnekmuposanuu nexyuti coonrooatime psio nPasu:

1) Yuurech cienuTh 3a MBICIIBIO TIPEIOIaBATENs BO BPEMs U3JI0KEHHSI HOBOTO MaTepualia, pa3ieisiiiTe CBOE BHUMaHUE MEXY OTACITbHBIMU MOJI0KECHH-
SIMU JICKIINH.

2) OOpamnaiiTe BHUMaHUE HA TOH H3JIOKCHHSI, MTHTOHAINIO (TJIABHBIC MTPEIJIOKEHUS BBIICIISIOTCS M IPOU3HOCATCS TPOMYE).

3) 3anucy 1o KaKI0MY IPEMETY BEAUTE B OTACIHHOM TETPAIU, HE MUIINTE HA PA3HBIX JUCTKAX, KOTOPBIC, KaK MMPABUIIO, TEPSIOTCS.

Kax comosumucst k sK3amenam.

Kak Hu cTpaHHO, HO JIy4IIKii CIOCO0 XOPOILIO CAATh 9K3aMEH — 3TO PErYJISIPHO 3aHUMAThCs B T€UYEHUE roja. Toraa Matepuall OyAeT IOCTENEHHO YKIIa-
JIBIBAThCSI B FOJIOBE, IepepadaThIBaThcs U cCUCTeMaTU3upoBaThesl. HoBbIe 3HaHMS MO H3ydaeMOMY MaTepHaity OyIyT MOCTyNaTh YK€ Ha MOATOTOBJIEHHYIO
MIOYBY, a YK€ UMEIOIIIecs B FOJI0BE MOJI X BO3JeHcTBUEM OyIyT JOMOIHATHCS U NepeocMbIcauBaThes. M nepesa s5Kk3aMeHOM Tako# ydamuiics ¢ yauB-

JIEHUEM ITOMMET, 4TO, OKa3bIBACTCS, YUIUTh — TO HUYETO U HE HAJI0, OH U TaK YK€ BCE 3HAET.
Baw oxcenmnvmenckuii nabop 0ns coauu IK3aMeH08 TOJIKEH COCTOSITh U3 CHUCKA OUIemos, KOHCNeKmMOo8 IeKyull U HeCKOIbKux yueonukog. Ecimm «pac-

KOITa€TE» B MHTCPHETC YbH-TO HIIAPTraJIK1U — TOKEC OUYCHB XOPOIIO.

Pacnucanue sk3aMEHOB COCTaBIISICTCS TaKUM 06pa30M, YTOOBI MEpCPLIB MCKAY ABYM 3K3aMCHaAMU ObLI HEe MeHee 3 JTHEH. HOBTOMy JACIINTC KOJIMYCCTBO

CBOOOJTHBIX JTHEH HA KOJMYECTBO OMJIETOB M HAUWHAWUTE MTOATOTOBKY.

Bpemst moAroToBKM K 3K3aMeHY HaJl0 pa3yMHO pachpeaenuTb. He crnenyeT 3aHMMAaThCs IO MHOTO 4acoB 0e3 mepepbiBoB. Jlydie yuuth Giiokamu —
YCBOMJI TEMY, 3aKpENHI €€ U OTIOXHYIL. 3aTeM KpaTKO OBTOPUJI, YTO 3ay4uJl, U —3a HOBYIO TeMy. He crouTt 3aHuMaThCs 1 10 HOYaM, HA000POT, TOTOBSICh
K 9K3aMeHaM, HaJI0 XOpOILIO BBICIIAThLCS, TOTAa U TosioBa OyneT paboTarts Jsiydine. Ilcuxonoru nHOr1a COBETYIOT yCTpauBarh ce0e B IHU MOATOTOBKU K

9K3aMCHaM I[pO6HLII>i COH — MCHBIIC CIIaThb HOYbIO (paHLI_HC BCTaBaThb, a HC IO3KC J'IO)KI/ITBCSI), HO 3aTO CIIaTh ,Z[HéM, KaK B JI€TCAAOBCKUM «TUXHUM Yacy.
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Ilepea cHOM MOKHO ITOBTOPUTBE 0CO00 TPYAHBIM MaTepuail. Kak H3BeCTHO, XOpPOIIO 3alIOMUHAETCS TO, YTO OBIJIO BblyueHO nocieHuM. Kpome Toro, Bo
BpeMs CHa MOJIyYeHHBIE 3HaHUs OyIyT nepepadaThIBaTbC MO3TOM, U MIEPEXOIUTH B JJOJITOBPEMEHHYIO MTAMAThH B CIIOKOMHOM 00CTaHOBKE, HE TIOATOHSIE-

MBbI€ MTOCTYNAIOIIEH HOBOM HH(OpPMAIIHCH.

BriOupaiiTe B mepBylo oyepeab camble TPYAHBIE I ceOs BOMPOCHI, T.K. TOTOM y Bac He OyJeT BPeMEHU UX MOArOTOBUTH. TO, UTO 3HAETe XOpOIIO,

IMOBTOPHUTC B CaMOM KOHIC IMMOATOTOBKH.

Ecnu nrobute nucaTh mnaprajiky — MUIIMTE Ha 3J0POBbE.

['0TOBUTH MIMAprajgky MoJe3HO, HO MOJIb30BAThCS UMU PUCKOBAHHO. [ J1aBHBIN CMBICIT MOATOTOBKY LIMApPTrajloK — 3TO CUCTEMATHU3alMs U ONTUMU3AIUS
3HaHUH 10 JAHHOMY IIpEIMETY, YTO caMo IO ce0e MPEKPacCHO — 3TO OYEHb CIIOKHAS U BaKHas JUId CTyAEHTa pabota, Oojiee Cl0oXKHas M BaXKHas 4eM
«TYTIOE», KMETOJINYECKOE» U «CIIOKOMHOE» MOIJIOIEHHE MAacChl (TOUHEee — «Ky4n») yueOHOM nHpopmanuu. Eciiu cTy1eHT caMOCTOSTENbHO OArOTOBHUII
TaKye LINaprajky, TO, CKOPee BCEro, OH M YK3aMEHBI CaBaTh OyZeT Oojiee YBEpEHHO, TaK KaK y HEro yxe chopMupoBaHa oOIas OpUCHTUPOBKA B
CJI0XKHOM Matepuaie. K coxxaneHuto, MHOIME CTY/I€HThI Ja)Ke B COOCTBEHHBIX KOHCIEKTAX YaCTO OPUEHTUPYIOTCS OYEHb IJI0XO.

Hanpumep, nHOT1a MBI TPOBOJIMIIN K3aMEHBI, pa3pelias MoJb30BaTbCcs CBOMMU KOHCIIEKTaMHM (M Jake ydeOHMKaMH) BO BpeMst camoro otBeta. lHorja
HECKOJIbKUX CEKYHJ OBLIO I0CTaTOYHO, YTOOBI OLIEHUTB, 3arJIsIbIBAJ JIU CTYACHT B CBOM KOHCIIEKTHI (M TeM 0oJjiee B KHUTM) IIPU MOATOTOBKE K JAHHOMY
OTBETY.

Ymo oenams, eciu 3K3aMeH He cOau?
[TepBoe u TT1aBHOE — HE BIIAJIaTh B OTYASTHHE.

He nbITaliTech ckanIamuTh ¢ IpenoaBaTeasiMi, OOBUHSSA €ro B HECTIpaBeUIMBOM OIIEHKE Ballero0 OTBETA, COXPAHANWTE COOCTBEHHOE IOCTOMHCTBO.
Cneodyrowgee pexomenoayuu noMo2ym 6am 00OUMbCs ycnexa Ha nepesK3amMeHo8Ke:

— CMHPUTECH C CUTYyalllel, o0uja — II0X0H OMOIIHUK B MTOATOTOBKE;

— OTHOCHUTECH K CUTYallud KaK K OJaronpusiTHON BO3MOXKHOCTH OCBOMTD TO, B YEM BBl OKa3aJIMCh HEJOCTATOYHO CHIIBHBL;

— OIIPENIETUTE, YTO Bbl KOHKPETHO HE 3HAIM.

ABTOpBI HAJCIOTCS, YTO MIPUBEIECHHbBIE PEKOMEHJAIIMH TOMOTYT YCIIEIIHO OCBOUThH HE TOJIBKO MaTeMaTU4YeCKUE JUCHUILIUHBI, HO U IPYTHe MPeIMEThI

BO BpeMs 00y4YeHHMsI B BHICIIIEM yU€OHOM 3aBE/ICHUU.
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TeopeTuyeckuu pasgen
§1. Linear algebra

1.1 Matrix. The basic definition. Matrix operations.

Definition. A rectangular array of numbers, algebraic symbols or mathematical functions of the species

&; & ... A,
A a,y a, ...
a, a a

ml m2 mn

consisting of m rows and n columns is called matrix. Elements of the A matrix are numbered by two indices. Square brackets are also used to designate

the matrix. Thus, the elementa,, belongs to the first line and to the second column. We'll write abbreviated 4 = (a,.j) i=lm,j=1n.

If m=n then the matrix is called the square matrix of order n. For the square matrix, the elements a,; make up the main diagonal. The zero - matrix is

called a matrix, all elements of which are zero; it is denoted by the letter O. The square matrix, which has all the elements that do not stand on the main
diagonal, are zero, is called diagonal. The diagonal matrix, in which all elements of the main diagonal are equal to one, is called an identity matrix. An

identity matrix is denoted by the letter E. The square matrix is called triangular, if all the elements located on one side of the main diagonal are zero. The

1 0
. . . N . . . . 1 -2 4
matrix derived from this replacement of each of its lines with a column with the same number is called transposed. So, if 4 :[O s J ,AT=|-2 5
I
4 x

and A=A, o, AT =Al,, (AT )T =A.
The main operations over the matrix are: the addition (subtraction) of the matrix; multiplication of the matrix by real number. Additions (subtractions)

are introduced only for matrixes of the same size.
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Definition. The sum of the matrices A+ B, where A=(g;)and B = (b;) are of the same size mxn, is called matrix C = (c;) of the same size mxn,

each element is equal to the sum of the corresponding elements of the A and B matrices:

Similarly, the concept of the subtraction of the two matrixes is introduced C=A-B.

Definition. The product of the matrix A on the number « € R is called the matrix B, such that

B=a-A=A-« and

3 2 -1
Example 1.1. Find an X matrix that satisfies the condition X =3A—4E,thenA=| -4 0 6
1 0 O
100
Solution. In this case, E=| 0 1 and, therefore,
0 01
3 2 -1 100 9 6 -3) (400 5 6 -3
X=3/-4 0 6 |-4/0 1 0|=|-12 0 18|-|0 4 0|=|-12 -4 18
1 0 O 0 01 3 0 O 0 0 4 3 0 -4

The product of two matrices A and B could be calculated only if the number of columns of matrix A is equal to the number of lines of the B matrix, i.e.

if Alisa mxn size matrix, then B should have a nxk size.
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Definition. The product of the matrix A on the matrix B is called the matrix C, the elements of which are based on the formula.

=a, b, +a,-b,+...+a, -b,y., i

1

[/

If there is a product A- B, the product B- A may not exist. It may be that when there is B-A. A-B=B-A.

If A-B=B-A, then the A and B matrix are called permutations (or commuting).

-1 0
. . . -2 4
Example 1.2. Find the composition of the matrix A:( 6 2) and B=| 2 -3/,
- 4 5

Solution:

-1

a2 43, 03_ ~2(-D)+4-243-4  —2.0+4-(-3)+3-5) (22 3
o ' ) (=D (=6) 2424 1-0+(=6)-(=3)+2-5) (-5 28)

22 3
Answer: A-B= .
-5 28

Note that the product B- A exists:

-1 0 2 -4 -3
-2 4 3
B-A=| 2 -3 1 6 2)° -7 26 0 |,and A-B=B-A.
4 5 -3 -14 22
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1.2 Determinants. Minors and cofactors.

Each square matrix A of order n has the corresponding real number

det A(]Al or A), which is called its determinant. Consider the determinants of the 1st, 2nd and 3rd orders.

Letn=1, A4=(a,). The determinantdet A=a,;.

Letn=2, Az(a” a‘ZJ. Second-order determinant
ay Ay

i Ay
det A= =ay, Uy — Ay Ay

dy Ay

o o [ ] (]
The calculation of the 2nd order determinant is depicted by the scheme: = \ - /
o o [ ] [ ]
the product of the product of elements
elements of of by—product diagonal
the main diagonal
ay G ap
Let n=3, A=|a, a, ay |. Third-order determinant
d; 4y dy
a a4y
detd=|ay @y ay|=a)ayay; +ayanay; + @005, — A310 013 — Ay G333 — A3y - (1.5)

ay dy  dsy
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Third-order determinants are usually calculated using the triangle rule (or Sarroys rule). The essence of it is that the determinant in (1.5) consists of three
components taken with the sign "+" in the scheme (Figure 1.1, a) and three components taken with the sign "—" on the scheme (Figure 1.1, b).

Q
(+) -)
a b
Fig. 1.1
> A Technigque for Evaluating 2 x 2 and 3 x 3 Determinants
i1 P -
4 2 = g = (3=2)—= (1)) =—10
I 2 3 i - A I
-4 5 6|=|=—4 5 & =4 5
7 =R 9 _?I—R ."‘}-..].._R'.
= [45+ B4 + 96] —[105—48 —T72] =240 -

. . . 21
Example 1.3. Find the matrix determinant Az[ ) jj

Solution:
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According to the formula (1.4) we have:

21 3
detA= 4=21-4—(—2)-3=84+6=90.
-2 1 -3
Example 1.4. Find determinant of the matrix A=| 7 2 -1/|.
5 4 6
Solution:

According to the formula (1.5) we have:

detA=(-2)-2-6 +7-4-(-3)+1-(-1)-5-5-2-(-3)—7-1.6 —4-(—1)- (- 2)=—133.

Let's give a square matrix of the 4th order. We will select in it arbitrarily s rows and s columns elements standing at the intersection of s rows and s
columns form the matrix of order s. Determinant of this matrix is called the minor of order s and is designated by M. For example, for the matrix

17 dp Y3 Ay

a a a a . . .
A=| 2L 722 723 T24 | \when s=2 choose the second and third lines, the first and fourth columns.
d3; dgp dgz dgy

dgy Qyp A3 Ay
Then the second-order minor will be the determinant

a a
M = 21 24

d3; Az

and additional minor will be a determinant.

A, a3
Ap Ay

M’ =

Each elemeht a; of the 4-th order matrix is a minor of the first order. By removing i-th row and j-th coiumn, we obtain a submatrix of A, having the

order (n-1). The determinant of that submatrix is called the minor of the elemeht a,,

which is denoted by M.
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Definition. The cofactor of the elemeht a; is defined as M, with the sign(~1)*/, it is denoted by the symbol A;:

Then let's assume by definition that the determinant of the matrix of the fourth order

ayp dypy diz dy

Ay Ay Ay dy .
det A= =ayA, +a,A, +as Ay +a,4,,1=14. 2.7)
;) 4y dz3 dy

Ay Ay dyz Ay

(the expansion of the determinant by the elements of the j-column).
Similarly, one can introduce the concept of a n-order determinant.
Theorem (about the expansion of the determinant by the elements of the rows). The determinant for the n-order's square matrix is equal to the sum

of the products of elements of any row of A and the corresponding cofactor, i.e. the formula is fair

ay Ay e Oy,
dy dp a, : < ., T . T
det A= " =Za,.kAf.k =Zafg.A,q. i=Ln, j=1n). (1.9
N =
arrl an2 ami
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For
n=3 and i =1 formula (1.9) will take shape

an ap

det 4 =|a,, Ay |=ay Ay + ap A, + a4,

ay Az Ay

where

A= (D My = (-1 +1fd22  Az3

a3, ag3

Ay = (12 My, = (12 81 a3

dz; Aagz

Q) apxp

Ay =12 My =(-2)*°

d31 832
Here are some of the determinants properties.

The matrix determinant is equal to the transponsed matrix determinant, i.e.det 4 =det 4™ .

The determinant changes the sign to the opposite, if two columns (two rows) of a matrix are interchanged.
The determinant for the matrix O is equal 0.

A determinant with two identical parallel columns or rows is zero.

8, &, 4 8 8y, g
Aa, Ad,, Aa,l=A-la, a, ay|.ltistrueforany AeR and any column or row.

a31 a32 a33 a3l a32 a33

If the corresponding elements of the two parallel rows of the determinant are proportional, it is zero.
If you add elements of one row multiplied by a number to the elements of a parallel row of the determinant, the magnitude of the determinant will not

19



change.

1 -10
Example 1.5. Evaluate the determinant for the matrix A by a cofactor expansion along the first row, A=| -2 3
1 2
Solution:
Let's use the formula (1.10):
1 -10
detA=|-2 3 4=1.A +(-1)-A,+0-Aj3,
1 2 2
where
3 4 -2 4
Ay = (=1 =3.2-4.2=-2; A, =(-1)". =—(-2-2-4-1)=8;
A =7 220
-2 3
Ay =(-1)*3 | ‘:-2-2-3-1:-7. detA=1-(=2)+(~1)-8+0-(-7)=-2-8 =-10.

Note that A ;it was possible not to calculate, because a,;;=0.

1.3 Inverse matrix.

Let A be a square matrix of order n

a1 an

a a a
A= 21 22 2n

anl ar12 arm
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Definition. The square matrix A is called regular if its the determiner is not zero, i.e. A=det A=0. If A=det A=0, then matrix A is called singular.

The matrix A% is called inverse to the square matrix A if

Al A=4-4"=E,

where E is a identiy matrix.

: : . a1
Theorem. For the regular matrix A, there is only one an iverse matrix A .

The inverse matrix can be found by the next formula:

1 -10
Example 1.6. Find the inverse to the matrix A=| -2 3 4/|.
1 2 2

Solution:
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Since A=detA=-10=0 (see example 1.5), the matrix A is regular and the inverse matrix exists. We'll find cofactors to the matrix elements for A:

AU:(—I)I“-; ;‘zl-(6—8)=—2; A =2
A= j —l(A-d)=8 A8
An:(—l)l”-_lz j=1‘<—4—3)=—7; A3 =-T;
A21=(—1)2+1-_1 g‘z—l-(—z—()):z; Ay =2;

Ayy = (=1)**% 1

0

2‘:1-(2—0):2; Ay =2;

A23 :_3, A31 :_4, A32 :_4, A33 :1

Substituting all the results in (1.13), we get the reverse matrix

—2 2 —4 02 -02 04
Al-—_——| 8 2 —4|=|-08 -02 04].
-7 -3 1 07 03 01

. . -1 2 50 =20
Example 1.7. Solve the matrix equation X - = .
1 3 40 10
Solution:

. . -1 2 . .
Matrix determinant A =‘ . 3‘ =-3-2=-5=0. Matrix is regular, we find the cofactors

Ap=(D"3=3 A=(-)"? (2 =-2 Ay=-2 Ay=-Ll

50 -20

40 10

L 3 J then the matrix equation will be written in the form of X-A=B. Multiply both parts of the last equation on

_ -1 2
Let's designate A= ,B=
A from the right side: X -A-A*=B-A. Since A-A=E, then X -E=B-A*= X =B-A™. Find the reverse matrix A™ on the formula (1.12) at n=2.
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3 -2
Therefore, A‘1=—1 .
5{(-1 -1

Finding the matrix

B AL X_50 -20\ (1Y 3 -2
- 740 10 5 -1 -1/

170 80
v L 50-3+(=20)-(-1)  50-(=2)+(-20)-(-1) _ 1(170 =80\ |75 T |_(-34 16‘
5 40-3+10-(-1) 40-(~2)+10-(~1) 5\110 -90) | 110 90| {(-22 18
-5 =5
Answer: X = —34 16
22 18 _
Note some of the properties of feverse matrix:
de A‘l):—1 ;
detA

(A-B)'=B"- AT

(w] =(aT)™
1.4. Matrix rank.

Definition. The rank of the matrix is called the largest of the orders of its minors, other than zero. If all matrix minors are zero, the rank of the matrix is
considered to be zero. Symbol:
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rang A; r,, r.
Definition. The basic minor of the matrix is called a non-zero minor, the order of which is equal to the rank of the matrix.

For the non-zero matrix there is a basic minor, generally speaking, not the only one.

. 2 2 . . . . .
For the matnxA:(4 4J the rank is equal tol, as there is a minor of the 1st order, different from zero (for example, [2|=2+0) and all minors of
the 2nd order are zero (due to the proportionality of the lines). The basic minor is every minor of the 1st order.

. 1 2 . . . . . L - . 1
For the matrix B =(3 4} the rank is equal to 2, e.i. ry =2, because detB=-2=0. The only basic matrix minor coincides with its determinant 3

Definition. Minor, edging minor M of order k for the matrix A, is called the minor of order (k+1) of this matrix containing minor M.

Definition. Elementary transformations of the matrix will be called the following operations:

multiplying the row (column) of the matrix by a nonzero number;

adding to one row (column) of the other matrix row (column) multiplied by an arbitrary nonzero number;

permutation of two lines (columns) of the matrix.

It is known that in the elementary transformations of the matrix its rank does not change.

Rank of matrix can be found in the following ways.

The method of elementary transformation of finding the rank of the matrix is that any non-zero matrix with the help of elementary transformations can

lead to upper triangle form or row echelon form, i.e. to the matrix of the species

b;I.l b12 blr | b1r+1 bln
0 by ... by| byy ... by,
5| B ,where is b,,, by, ...,b, — NONZEO.
Q Q [ brr | brr+1 bl’n
O 0 .. 0 0 .. 0
0 O 0 0o .. 0

Let's cross out zero lines in B. The rank of the received matrix is r - the number of nonzero lines.
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by b o By

. . . . . . 0 by, ... Db
Therefore ry =r, and r, =r . The base minor in matrix B is a dedicated minor 22 2|,

0 0 .. b,
The method of fringing minors of the matrix rank calculation is based on the following statement.
Theorem. If matrix A has a minor M of r, different from zero, and all minors bordering minor M (if they exist) are zero, then
ry=r.
To find the rank of matrix A, you need to:
1) Find some minor of the 1st order (i.e. the element of the matrix) different from zero.
If there is no such minor, then the matrix A is zeroand r, =0.
2) Calculate the 2-nd order minors that border minor until there is a minor other than zero. If there is no such minor, then r, =1; if there is, then r, > 2
.Etc..
The process must continue until either all the bordering minors are zero, or the minors of (k+1) order of this matrix do not exist.

In this case, r, =K.
Note that when finding the rank of the matrix in this way is enough at each step to find only one nonzero D minor k-order for M, ; #0.

1 -3 2 5
-2 4 3 1
Example 1.8. Find the rank of the matrix by the method of elementary transformations: A=| 0 -2 7 11|.

7 -15 -7 2
-1 1 5 6

Solution:

Let's bring the matrix to row echelon form:
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1 -3 2 s\W 1 -3 2 5\

1 -3 2 5
-2 4 3 1 0o -2 7 11 0 -2 7 11
0 -2 7 11| -0 -2 7 11| /0 0 0 0 — r, =2 (this is the number of nonzero lines).
7 =15 -7 2 0 6 -21 -33 0O 0 0 O
-1 1 5 6 0o -2 7 11 0O 0 0 O

Here are the numbers [1], [2] what's next:

[1] — to the second line add the 1st, multiplied by (-2);
to the 4th line add the 1st, multiplied by (-7);

To the 5th line add the 1st.

[2] —3rd and 5th lines deducted the 2nd line;

to the 4th line added the 2nd, multiplied by 3.

Answer: 1, =2.

1 2] 1] -4 5

. . . . . _ 3 4] 0] -1
Example 1.9. By the method of edging minors to find the rank of the matrix and specify one of the base minors: A= 46 1| -5 s
5 8 2 -9 10

Solution:

Since matrix A has nonzero elements, r, >1. We will choose as a basic M, =[1| =1, standing in the top left corner. Let’s move on to the calculation of the
. . 1 2 N
2nd order minor, bordering the chosen M, . Choose M, = 3 4 =-2=0, standing in the top left corner.

Since M, =0, we move on to the calculation of the third order of the minors.

1
mMP =|3 -0,
4

o AN
O .
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1 2 -4 1 2 5

MP =3 4 -11=0; M{P =|3 4 0|=0, since the third line in all these minors is equal to the sum of the first two lines,
4 6 -5 4 6 5

Similarly,
1 21

M{®P =3 4 0=0,
5 8 2
1 2 -4 1 2 5

MP =3 4 -1=0; MP =3 4 0|=0, since the third row is equal to the sum of the second and the first, multiplied by 2.
5 8 -9 5 8 10

. . . . . 1 2
Since all the minors of the 3rd order, bordering are zero M, =0, thenr, = 2. One of the base minors isM, = 3 4"

1.5. Linear Equation Systems. Concepts. Solution of non-degenerate linear systems. The matrix method. Kramer Formula.

Definition. The system of m equations with n unknowns variables x;,x,,...,x, is called linear if it has the appearance of

ay X, +apx, +...+a,x, =b,

Ay X +UpXy +.oo+ Ay, X, = by,

(1.15)

Ay X, + Ay Xy +...4a,,x, =b

mn = n

m?

where numbers a, (i =1 m; j=1n) are called numerical coefficients, and the numbers b, (i =1 m) — constants.
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Definition. A solution of system (1.15) (c,,c,....,c,) is a set of values of the unknowns x,,x,,...,x, that reduces all equations (1.15) to identities.

If there exist a solution of simultaneous equations then the system is called consistent; otherwise, the system is inconsistenit. Solving the system of
equations means figuring out whether it is consisten or not, and if it is consisten, then find all its solutions. Two systems of equations are called equivalent
if any solution to one of them is also the solution of the other and vice versa. Equivalent equation systems are produced as a result of the following
transformations:

multiplying the system equation by a number other than zero;

adding to one equation another, multiplied by any number; rearranging the two system equations.

The system of equations, in which all free members are zero (b, =b, =...=b,, =0) is called a homogeneous.

A homogeneous system is always a consisten system, as it has zero solution x, = x, =...=x, =0, although it is not necessarily the only one solution.

The system (1) can be written in a matrix form AX =B,

, p ...
where o= | ®21 %22 - — matrix for the system;
qm amz .- @mn
X1
X =| 2 | —column (or vector-column) of unknown variables,
Xn
by
5| % | - cotnsants column.
by
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1 dp .- Yy by

Ay Ay ... Ay, b

The matrix A= is called the extended matrix of the system.

am Am2 .- 8nn O

Consider the case of the n equation system with n unknown variables:

ay X, +apx, +...+a;,x, =b;

Ay X) + Ay Xy +.ooF ay, X, = by

(1.16)

anlxl +an2x2 +“'+annxn :bn’

or in a matrix form: AX =B.

The system (1.16) is called consisten if the coefficient matrics is regular: det A=A #0.

The consisten system (1.16) n=m has the only one solution that can be found

1) matrix method by formula X = 47'B, (2.17) I

2) Kramer's formulas: x; = %, i=ln, (2.18)

Where A; is the matrix determiner derived from the A-pillar matrix by changing its i-th column the column of free members B.

29



2x1 — Xy +X3 :0,
Example 1.10. Solve the equation system<3x, —2x, —x; =5, by Kramer's formulas and by matrix method.

xl+X2 +x3=6

Solution:
2 -1 1
The system's matrix looks like: A=|3 -2 -1].
1 1 1
2 -1 1
Its determinant A=|3 -2 -1=7=0 as such, the system is consisten and has a single solution.
1 1 1

Using Kramer's formula (1.18), finding A;,A,,A;:

0 -1 1 2 01 2 -1 0
A =5 -2 -1=28A,=|13 5 -1§=35A,=[3 -2 5=-21. Then
6 1 1 1 6 1 1 1 6
X1=£=§=4; X2=ﬁ=§=5; X3=£=_—21=—3
AT AT A 7
Answer: (4;5; -3).
2) Find
1 A11 AZJ. A31 1 -1 2 3
At=——_. ==|-4 1 5
deiA Az Ap A 2

Mg Az Agg 5 -3 -1
Then by formula (1.17)
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x) (-1 2 Yoy (28
X=|%|=2|-4 1 5]5|=_/35|=|5
X3 5 -3 -1)6 ~21) |-3

Answer: (4;5; -3).

1.6. The investigate of Systems of Linear Equations. The Kroneker-Capelli theorem. Method of Gauss.

Consider the system (1.15).
The Kroneker-Capelli theorem. The system of linear equations (1.15) is consistens if and only if the rank of the system matrix is equal to the rank of

the extended matrix of the system: ry =r;.

To investigate a system of linear equations means to find out whether it is solvable or not, and for a solvable system to determine whether it has a single
solution or an infinite number of solutions.

Three cases are possible:

ry <r;z —the system is inconsisten (i.e. there are no solutions).
ra =rz =n (n - number of unknown variables) - the system is consistens and has a single solution.
ra =r; <n —the system is collaborative and has an infinite number of solutions.

For example, the Gauss method (a method of sequential exclusion of unknown variables) can be used to study linear equation systems. With the help of

elementary transformations over the rows, the system of m linear equations with n unknown variables can be brought to the next form:
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111 +Clzx2 +...+Clrx,, +...+C|nxn :d];

CopXg +...+Cop X, ...+ Cp Xy, =d2;

wherec; #0 (=12, ...,r), r<n.

If at least one of the numbers

drq, 00,0, dpy

is different from zero, the system (1.19), and therefore the original system (1.15) are inconsistent

(ry=r<ry).

If d,,,=d,,=..=d_=0 then ry =rz and the system (1.19) is collaborative. In the case of r, =r=rz <n unknown x, x,,...,x, are considered to be basic,

and X, .1, Xp42,.--, X, — free variables.

Basic unknown variables x,, x, ;,..., x,,x, leave in the left part of the equations, and the free variables X;.1, X;,2...., X, transfer to the right part. From

equations (1.19) express sequentially basic unknown variables free variables, which are given arbitrary values, receiving a general solution of the system
(2.19) ((1.15)) (the system will have an infinite set of solutions).

If ry =r=rz =n the system (1.19) will have the only one solution that is found, expressing consistently x,, x, 1,..., X,, % through d,,d,...,d,,d;.

Example 1.11. Gauss method to solve the system
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2x) +3x, +5x; =12;
X; —4xy +3x; =-22;
3x1 — Xy —ZX3 =0.
Solution:
The system's extended matrix looks like

2 3 51 12
A=[1 -4 3| -22|

3 -1 =2/ 0
By making elementary transformations over the lines of the extended matrix, we get
[2]

2 3 5 2\ o1 o-a 3 -2
1 -4 3] -22| 5|2 3 5 12| >
3 21 —2] 0 3 21 —2] 0

1 -4 3 -2\ 1 o—a 3 -2
S0 11 <1 56| —|o 11 -1 56 |
0 11 —11| 66 0 0 -10] 10

where the numbers[i], [2] [3] indicate the following operations:
[1] —first and second lines swapped; [2] — to the second line added the first, multiplied by (—2); to the third added the first, multiplied by (-3); [3] —to the

third line added the second, multiplied by (-1).
This matrix corresponds to the system

~10x; =10.

From here we find
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10 56-1
Xo=——=-1 11X, =56+ X3, X, =———=05;
3= 10 L 2 3 %=
X =—22+4X, —3%3; % =1.
Answer: X =1, X, =5 Xz=-1.
Example 1.12. Solve the system

X +x, —x;=-4;
x, +2x, —3x, =0; by Gauss method.
—2x, —2x; =16.

Solution:

The system's extended matrix looks like

1 1 -1 -4
A=[1 2 -3 0
2 0 -2| 16

With the help of elementary transformations, we will bring the matrix to the row echelon form:

(I Y RS S Y 7 A T T
1 2 -3 0| »/0 1 -2| 4| /[0 1 -2| 4|,
-2 0 -2| 16 0 2 -4 8 0 0 0 0

where [1], [2] the numbers indicate the following operations:
[1] — from the second row we subtract the first row, to the 3rd line add the 1st, multiplied by 2;

[2] - to the 3rd line add the 2nd, multiplied by (- 2).

Let's get that ry =rz =2<n=3. Consequently, the system is collaborative and has an infinite number of solutions. x,, x, — basic unknown variables, x, —

free variable. The number of basic unknown variables equals r, =2; number of free unknown variables equalsn—r, =1. Let's write down a system of

equations corresponding to the extended matrix:
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Xg + Xy — X3 =—4;

On the left side of the equations will leave only the basic unknowns:
{xl +xy =4+ x3;
Xy =4+ 2x;.
Substituting x, the expression for the 1% equation, we get X, =—X; —8.
Suppose that x; =C, C e R then the solution system will have the next form:
x=—C=8 x,=4-2C; x3=C.

Answer: (-C-8;4-2C;C), CeR.
Example 1.13. Solve the system by using the Gauss method.

X+ Xy — X3 =4,

X +2X; —3X%3 =0;

— 2% —2X3 =3.
Solution:
Transform to the row echelon form the extended matrix of the system:
101 -1 -a" 11 oo - 1121 -a
1

2 -3] 0| |0 1 -2] 4| >0 1 -2] 4|
~2 0 -2| 3 0 2 —4] -5 00 0 -13

A:

[1] — we're subtract 1-st row from the row 2;
— to the 3rd row add the 1-st row, multiplied by the number 2;
[2] — to the third row add the 2-nd row, multiplied by (-2).

Because r, =2 =r; =3 the system is inconsisten.
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Answer: the system is inconsisten.
§2. Vectors

2.1 Vectors in the plane.

Some of the things we measure are determined by their magnitudes. For example, mass, length, time are described by number and name an appropriate
unit of measure. On the other hand, we need more information to describe a force, a velocity or displacement. We need to know also direction. To
describe a body” s displacement, we have to say in what direction it moves as well as how far.

Quantities that have direction as well as magnitude are usually represented by arrows that point in the direction of the action and whose lengths give the
magnitude of the action.

Definition. Vector is the directed line segment.
Further, the vector a is equal to the vector b, if they have the same length, parallel, and point in the same direction.
Vectors are usually described with single roman letters with arrows over them: a ora,b orb and soon. The vector defined by the directed line

segment from point A to point B is written as AB. If the vector a is parallel to the vector b, then we say that a is collinear to b .

Example. Consider the parallelogram:

B C
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ABIl CD and BC || AD.

Moreover, AB =DC and BC = AD.
Scalar multiples.
We multiply a vector by a positive real number by multiplying its length by the number. To multiply a vector by 3, we triple its length.

We multiply a vector by a negative number by reversing the vector’s direction and multiplying the length by the number’s absolute value. If ¢ is a non-
zero real number and v is a vector, the direction of cv agrees with that of v if ¢ is positive and is opposite to that of v if ¢ is negative. We call real

number scalars and call multiples like cv scalar multiples of v (fig. 2.1).

Further, multiplying a vector by zero produces the zero vector 0, consisting of points that are degenerate line segments of zero length. Unlike other

vectors, the vector 0 has no direction.

%

-2v
Fig. 2.1. Scalar multiples of V.

Geometric addition.
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Two nonzero vectors \71 and \/_2 can be added geometrically by drawing a representative of \71 , say from A to B as in fig. 2.2, and then a representative

of v, starting from the terminal point B of v, . In fig. 2.2, v, = BC. The sum v, +v, is the vector represented by the arrow from the initial point A of
v, to the terminal point C of v, .

Fig. 2.2. The vector AB +BC = AC .

That is, if v, = AB and v, = BC, then v, +v, = AB+ BC = AC.

The vector \71+v_2 is given by the diagonal of the parallelogram determined by \71 and v_2 . Therefore, the rule is called parallelogram law of addition.
B C

< |

A

<
N

Fig. 2.3. Parallelogram law.
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Components.
When a vector v can be written as sum v=v, +v, of two nonparallel vectors, the vectors v, and v, are said to be components of V.

The algebra of vector is based on representing each vector in terms of components parallel to the Cartesian coordinate axes and writing each component
as an appropriate multiple of a basic vector of length 1. The basic vector in the positive x — direction is the vector i determined by the directed line

segment that starts from (0; 0) to (1;0). The basic vector in the positive y — direction is the vector j determined by the directed line segment from (0;0)

to (0;1). Then ai(aeR), represents a vector of length |a| parallel to the x-axis, pointing to the right if a > 0 and to the left if a < 0. Similarly, b j is a

vector of length |b| parallel to the y-axis, pointing up if b >0 and down if b <0

Fig. 2.4. Figure shows a vector v = AC resolved into its i - and j - components as the sum v=ai+b].

Definitions.
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If v=ai+bj,the vectors ai and bj are the vector components of v in the direction of i and j . The numbers a and b are the scalar components of
v in the directions of i and j.

Definition. Equality of vectors (Algebraic definition).

ai+bj=ai+h,j<a =a, and b =b,.

Two vectors are equal if and only if their scalar components in the directions of i and j are identical.

Algebraic addition.

If v, =aji+bj and v,=a,i+b,j, then v, +v, = (a, +a,)i+ (b +b,) ] .

Example. (3i—2j)+(5i— j)=i-(3+5)+ j-(—2-1)=8i—3j.

Subtraction.

The negative of vector V is the vector —v = (=1)-v. It has the same length as v but points in the opposite direction. To subtract a vector \/_2 from a

vector v,, we add —v, to v, . It is shown geometrically on the Figure 2.5.

If v, =ai+b j and v, =a,i+b, ], then v, —v, = (a, —a,)i + (b —b,)j.
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Example. (3i+2j)—Gi—7j)=i-3-5)+j-(2+7)=-2i+9j.

Furthermore, the vector BP, =OP, —OR.. P(X;¥:), P.(X;¥,). OR =xi+Y,j, OB =x,i+Y,]. Therefore, BP, =i(x, —x) + j(Y, — Y,)-
Example. R (15), P,(3-7).

PP, =(3-1-7-5)=(2-12) = 2i -12].

Magnitude.

The magnitude or length of v=ai+bj is M =Ja?+b? .

It is follows from the Pythagorean theorem, as on Figure 2.6.

y

I 3

Fig. 2.6. The length of v is va? +b? .

Example. You push a loaded supermarket cart by applying 10 N force F that makes a 30° angle with the horizontal. Resolve F into its horizontal
and vertical components. (The horizontal component is the effective force in the direction of motion. The vertical component just adds weight to the

cart.
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Solution.

We draw a vector triangle for F = ai +b j (Figure 2.7).

al

_ /4

_ F / <
bt |bT] = |b| ~Jo

6
lat] = |a|

a) b)

a) F=ai+bj

b) ‘5‘=‘E‘-sin30" =5

Fig.2.7.

42



a =|F|- cos30° =1o.ﬁ=5\/§.
2

The component b <0, because Oy T bj. So, F =53i-5j.
Scalar multiplication.

Scalar multiplication can be accomplished component by component. If ¢ is a scalar and v=ai+bj is a vector, then cv=c- (ai + b]): (ca)i+(ch)j -

The length of cv is [c| times the length of v

‘C\_/‘ = ‘cai + cb]‘ = J(ca)® + (ch)? =/c?(@® +b?) =~/c? -Va% +b? = |c|‘\_/‘ .
If ceR and v is a vector, then ‘C\_/‘=|C|"\_/‘.

Example. v=3i+5j, c=3.

cv=3-3i+3-5]=0i +15]j.

The zero vector.

The zero vector is the vector 0=0i+0j . It is the only vector whose length is zero, as we can see from the fact that ‘ai + b]‘ =Ja’+b*=0<=a=0

and b =0.
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Unit vectors.

Any vector whose length is 1 is a unit vector. The vectors i and j are unit vectors.
\i\:\l-no-ﬂ:\/f +0? =1, ﬁ\:\o-nl-]\:\/ouf =1,

If u is the unit vector obtained by rotating i through an angle ¢ in the positive direction, then u has a horizontal component cose and vertical

component sin ¢ (fig. 2.8).

\ 4

X

Fig. 2.8. The unit vector that makes an angle of measure ¢ with the positive
x- axis. Every unit vector in the plane has the form u=cosg-i+sing- j for some ¢.
Length and direction.
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\"
M

Y

If v=0,then H is a unit vector in the direction of V.
v

1 —
:M-M:Lso

\'

We can therefore express v in terms of its two important features, length and direction, by writing v = M[H} If v =0, then:
v

Vo, ) . . -
1. ﬂ is a unit vector in the direction of V.
vV

.= 7V - . . N
2. The equation v = M ﬂ expresses V in terms of its length and direction.
v

Example. Express —3i+4j as a product of its length and direction.
Solution. Length of Vv: M = J(-3)2+4% =25 =5,

Direction of V: l=—§i+ﬂ]. So, \_/:—3i+4]=5-(—§i+f]j.
v 5 5§ 5 5
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§3. Cartesian (Rectangular) coordinates and vectors in space.

3.1 Cartesian coordinates.

To locate points in space, we use three mutually perpendicular coordinate axes, arranged as in Figure 3.1.

(x;y;0)

Fig. 3.1. The Cartesian coordinates system.

To locate points in space, we use three mutually perpendicular coordinate axes, arranged as in Figure 3.1.

The Cartesian coordinates (x; y; z) of a point P in space are numbers at which the planes through P perpendicular to the axes cut the axes.

Points on the x-axes have y — and z - coordinate equal to zero. That is, they have coordinate of the form (x; 0; 0). Similarly, points on the y-axes have
coordinate of the form (0; y; 0). Points on the z-axes have coordinate of the form (0; 0; z).

The planes determined by the coordinate axes are the xy-plane, whose standard equation is z =0 the yz-plane, whose standard equation is x=0; and

the xz-plane, whose standard equation is y = 0.The three coordinate planes x =0, y =0, z =0 divide space into eight cells called octants. The octant in

which the point coordinates are all positive is called the first octant.

Cartesian coordinates for space are also called rectangular coordinates because the axes that define them meet at right angles.
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In the following examples, we match coordinate equation and inequalities with the sets of points they define in space.

Example.

Defining equations and inequali- | Verbal description

ties

z>0 The half-space consisting of the points z and above the xy-
plane

X=-2 The plane perpendicular to the x-axes at x =-2. This plane
lies parallel to the yz-plane and 2 units behind it.

x>0,y>0,z>0 The first octant.

—-2<y<2 The layer between the planes y=-2 and y=2.

y=32=-2 The line in which the planes y =3 and z = -2 intersect. Al-
ternatively, the line though the point (0; 3;-2) parallel to the
X-axis.

Example. What points P(x; y; z) satisfy the equations x* +y*=9 and z=4.
Solution. The points lie in the horizontal plane z =4 and, in the plane, make up the circle x>+ y®=9. We call this set of points the circle x*+y* =9

in the plane z =4
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Fig. 3.2. The circle on the plane z=4.

Vector in Space.

The sets of equivalent directed line segments that we use to represent forces, displacements, and velocities in space are called vectors, just as in the
plane. The same rules of addition, subtraction, and scalar multiplication apply.

The vector represented by the directed line segments from the origin to the points (1;0;0), (0;1;0) and (0;0;1) are the basic vectors.
The position vector r from the origin O to the typical point P(x;y;z) is

r=OP=xi+yj+zk.

k(0:0:1)
7(1:0:0)
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Definition. For any vectors v, = xi+y, j+zk and v, = x,i +y, j + 2,k, v, +V, = (X +X,)i + (Y, + ,) j + (z, + 2,)k
V=V, =04 = %)+ (= ¥,) ]+ (z — )k

The vector between two points.

We express the vector PP, in terms of the coordinates of P, and P, in the next form:

If RO Y, Pa(XoiY,) then BR, = (% =% ¥, — i)

The vector from P(X;;¥1;2,) 10 Py(Xy:Y5:2,) is PP, = (%, —%)i+ (Y, — ¥,) ] +(z, — 2,)k.

The length(magnitude) of a=aji+a, j+a,k is |a = ya’ +a," +a;’ .
Scalar multiplication.

If ceR and a=xi+Yy, j+zk then ca=(cx)i+(cy,)j+(cz,)k.
Example. If ¢ =3, a=3i—2j+5k then ca=3a=9i—6j +15k.
The zero vector.

The zero vector 0=0i+0j +0k . ‘6‘ =0.

The vector 0 has no direction.

Unit vector.

A unit vector in space is a vector of length 1.
m =12 +0%+0% =1, m =02 +1% + 0% =1, ‘E‘ =02 +0?+1? =1. Therefore, i, j and k are unit vectors.

Magnitude and direction.

If a0 then ﬁ is a unit vector in the direction of a. Therefore, a = ‘5‘-‘% .
a a
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This equation express a as a product of its magnitude and direction.

Example. Find a unit vector u in the direction from R(10;2) to P,(2;2;4).

Solution. PP, =(2—1; 2—0;4—2):(1;2;2).\ﬁ\=\/12 +224+22 =49 =3,

PP, [1_2_2j 1. 2= 2o -
= === |=Zi+=j+=k=u.
PP 33’3

Distance in space.

The distance in space between two points P, and P, is the length of PP, .

‘@‘ = \/(Xz - X1)2 + (yz - 3/1)2 + (Zz - 21)2 .

Example. The distance between P,(3,0;~2) and P,(5,-3;4) is [RP,| =J(5-3)+(-3-0)2+(4—(-2)? =22+ +6° =/419+36 =/49 =7 .

Midpoints.
The coordinates of the midpoint of a line segment are found by averaging.

The midpoint M of the line segment joining points P,(x;; Y;;z,) and P,(X,;Y,;Z,) is the point

M[Xl 42- X, ; Y1 "2‘ Y> : 4 -'2' ZZ) . To see why, observe that

OM —OR, + RP, =OR, + (OF, - OR) =~ O+ OF, -

:X1+X2i+Y1+yzi+21+22E_
2 2 2
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Fig. 3.3. The point M is the midpoint for the line segment PP, .

3.2 Dot products.

We now introduce scalar product, the first of two methods we will learn for multiplying vectors together. The product is called scalar product because the

multiplication results in a scalar, not a vector.

When two nonzero vectors a and b are placed so their initial points coincide, they form an angle ¢ of measure 0 < ¢ < 7 (fig. 3.4).

s

T

b
Fig. 3.4. This angle is called the angle between a and b .
Definition. The scalar product (dot product) a-b of vectors a and b is a number

5-5:‘5‘-‘5‘@05(0, where ¢ is the angle between a and b .
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Since the sign of a-b is determined by cosg, the scalar product is positive if the angle between the vectors is acute, negative if the angle is obtuse.

- - = - — |— —2
a-a:‘a‘-‘a‘-coso:‘a‘-‘a‘-lz‘a‘ )

=1, k-k=1,i.-j=0,i-k=0, j-k=

|

=1, ] ]

Therefore, if a=xi+y,j+zk and b=x,i+y, ]+ ZZR then

gl'5:X1X2i'i+)(1Y2i']er1zzi'E+ ylxzi'i+ ylyzi'j+y122]'E+21X2E'i+

+zy,k- j+2,2,k-k=xX% +Y,Y, +7,Z,.

The angle between two nonzero vectors aand b is o= arcco{ﬁ ‘Z J
a

Example. Find the angle between a=2i—3j+5k and b=i— j+k.

B 21+ (-3)-(-1)+5-1 B ( 2+3+5 J_
¢ = arccos = arccos =
\/22+(—3)2+52 ~\/12+(—1)2+12J V4+9+25-V1+1+1 :arccosizarccoso,% =20,56°.
:arccosiz ’
3843

Laws of the scalar product.
From the equation a-b = XX, +Y,Y, +2,Z, , we can see that a-b=b-a (commutative law).
Also, if ceR then (c-a)-b=a-(c-b)=c-(a-b).
Further, a-(b+c)=a-b+a-c (distributive law).
If we combine this law with (1), we obtain that (a+b)-c=a-c+b-c.

Orthogonal vectors.
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Two nonzero vectors a and b are orthogonal if the angle between them is % For such vectors, we automatically have a-b=0 because co{%) =0.The

converse is also true. If a and b are nonzero vectors with a-b=0 then cosp =0 and ¢ = % .

Nonzero vectors a and b are orthogonal if and only if a-b=0.
Example. a=2i—j+3k and b=>5i+ 28] +6k are orthogonal because a-b=10-28+18 =0.

The scalar projection of b= PQ into nonzero vector a=PS isthe scalar projaﬁ determined by dropping a perpendicular from Q to the line PS(fig. 3.5).

P S

Fig. 3.5. proj_b.

If the angle ¢ between a and b is acute, proj55>0. If the angle ¢ between a and b is obtuse, then proj55<0.

In any case, proj. b= ‘5‘ .cosp=bh- ﬁ.
a
Work. As you know from high school, the work A done by a constant force of magnitude F in moving an object through a distance d is calculated as

A=F-d-cosp.Here ¢ is the angle between the direction of force F and the displacement S, Therefore, A=F -S.
Cross products.

In space, we need to be able to describe how a plane is tilting. We accomplish this by multiplying two vectors in the plane together to get a third vector
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perpendicular to the plane. The direction of this third vector tells us the «inclination» of the plane. The product we use to multiply the vectors together is the
vector or cross product. Cross products are widely used to describe the effects of forces in studies of electricity, magnetism, fluid flows and orbital mechanics.

This section presents the mathematical properties for cross product.
We start with two nonzero vectors a and b in space. If a and b are not parallel, they determine a plane. We select a unit vector n perpendicular to the
plane by the right-hand rule. This means we choose n to be the unit(normal) vector that points the way your right thumb points when your finger curl through

the angle ¢ from aandb.

Fig. 3.6.

We defined the vector product axb = ‘5‘ : ‘5‘ -sing-n.

The vector axb is orthogonal to both a and b because it is a scalar multiple of n.

Since the sines of 0 and 7 are both zero, it makes sense to define the cross product of two parallel nonzero vectors to be 0.
If one or both of a and b are zero, we also define axb to be zero.

Nonzero vectors a and b are parallel if and only if axb=0.

Reversing the order of the factors inverses the direction of the product. When the fingers of our right hand curl through the angle ¢ from b to a, our thumb

points the opposite way and the unit vector is —n. Therefore, bxa=—-axbh.

The cross product is not commutative.
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‘5 x B‘ is the area of a parallelogram.

Because ‘ﬁ‘zl, ‘5x5‘=‘5‘-‘5‘-8in¢. S :‘axﬁ‘:‘a‘-‘ﬁ‘-singo.

Fig. 3.7. The parallelogram determined by a and b .

Torque.

When we turn a bolt by applying a force F to awrench(fig. 3.8), the torque we produce acts along the axis of the bolt to drive the bolt forward. The magnitude
of the torque depends on how far out or the wrench the force is applied and or how much of the force is perpendicular to the wrench at the point of application.

Torque vector M =rx F .

F Fig. 3.8. The torque vector describes the tendency of force F to drive the bolt forward.
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The associative and distributive laws.
As rule, cross-product multiplication is not associative. (ax 5)><E #ax (BxE).

However, the following laws do hold:

Scalar distributive law

(ra)x(sh)=(r-s)-(axb).

Vector distributive laws:

5.><(5+E) —axb+axc

(b+c)xa=bxa+cxa.

The determinant formula for axb .

Suppose a=xi+Y, j+zk and b=x,i+Yy, j+2,k then

axh=xXi xi+XY,i % j+X2Z,ixK+ Y%, jxi+V,Y, % |+YiZ, j xK+2z,%kxi+

+ 21y2R X] + Z122R xk = X1Y2R - )(122] - 3’1)(2R + 3/122i +7,% ) — Zlyzi =

b
:X1
X2

=<
=1

.y

Y2

2

So,if a=xi+Yy,j+zk, b=xi+y,j+zk then

i j k
axb=|x, vy, z
X2 y2 22
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Example. a=2i+3j—4k , b=3i—2]j+5k.Find axb.

ik
H Aok J H 3 -4 = 2 -4 -2 3
Solution. axb =2 3 —4/=i- ~j- + -
-2 3 5 3 -2
3 -2 5

=i-(15-8)— j- (10— (-12))+k-(—4—-9) =7i—22j 13k .
The area of the triangle A(X;Y,;2), B(X,;Y,;2,), C(X;;Ys;2;) We can findas S = %‘A_CMHS‘

AC= (% — )(1)i +(Ys— yl)] +(z3— 21)E
A_B = (Xz - Xl)i + (yz - yl)] + (22 - 21)E
The triple scalar product.

The product (axb)-c is called the triple scalar product of @, b and c (in that order).

Kéxﬁ)-é‘ = ‘5x5‘-‘6‘-COS¢).

\{_J\(/OC"Q -

Fig. 3.9. Volume=area of base - height= ‘5 x 5‘ : ‘E‘ .COSQ = ‘(5 x 5)' E‘ .

The absolute value of the product is the volume of the parallelepiped, determined by a, b and E(fig. 3.9). The number ‘Exﬁ‘ is the area of the base
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parallelogram. The number ‘E‘ -COSe is the parallelepiped’s height.

It is easy to see that a-b-c=b-c-a=c-a-b.
On the other, hand, a-b-c=—c-b-a=-a-c-b=-b-a-c.

The triple scalar product can be evaluated as a determinant.

- = = = ([p, Dby b~ b, - b, b b b
a-(bxc)=a- 2 3i_b1 3j+b1 [l —a- 2 3_a2_b1 3+a3_b1 2| _
C, C| 6, C|” [c ¢ C, C, C, G c, C,
al a2 a3
=|b, b, by.
Cl CZ CS
L L al a'2 a3
Therefore, a-(bxc)=(axb)-c=|b, b, b,l.
C, C, G

Example. Find the volume of parallelepiped determined by a=i+3j—k , b=-3i+4k, c=7j—4k.

1 3 -1
Solution. a-(bxc)=|-3 0 4|=0+0+3-7-0-28-36=-43.
0 7 -4

V =|-43=43.

If a-b-c>0 thenthe triple a,b,cis right-handed. If a-b-c<0 thenthe triple a, b, ¢ is left-handed.
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§4. Lines and planes in space.

This section shows how to use scalar and vector products to write equations for lines, line segments, and planes in space.

Suppose | is a line in space passing through a point M (X,, ¥,,Z,) parallel to a vector a=(m;n; p). Then | is the set of all points M (X, y,z) for which
MM =t-a, t e R.(fig. 3.1).

e
M(x;y; z)

z
A
/ M, (%0 ¥0; Zo)
Y
0
X

!

Fig.4.1. a | MM .
Vector equation for the line through M, (X,, Yo, Z,) parallel to a. MM =t-a,—oo <t <+w.

Equating the corresponding components of the two sides of this equation gives three scalar equations involving the parameter t:

(x— Xo)i +(y— yo)] +(z— Zo)E = t(mi + n] + pR)
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X— X, =tm
Yy-Yo=1n
Z—17,=tp.

Standard parametrization of the line through M (X,, Y,,Z,) parallel to a=mi +nj+pk

X =X, +tm
y=y,+tn teR.
Z=17,+1p

Example. Find parametric equation for the line through P(-2;3;—2) and Q(0;—2;4) .

Solution. The vector PQ=(0—(-2);—2-3,4—(-2)) = (2;-5;6)) is parallel to the line.

X=-2+2t
Therefore, { y =3+ (-5)t teR.
Z=-2+6t

It is parametric equation for the line PQ. They simply place you at a different point for a given value of t.

To parametrize a line segment joining two points, we first parametrize the line through the points. We then find the t — values for the endpoints and
restrict t to lie in the closed interval bounded by these values. The line equations together with this added restriction parametrize the segment.

The distance from a point to a line in space.

To find the distance from a point M to a line that passes through a point M, parallel to a vector a, we find the length of the component of M ;M normal

to the line (fig. 4.2)

M M xal

d =‘W‘-singp=- ‘5‘
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d:‘W‘-sinqy

Fig. 4.2. The distance from M to the line through M, parallel to a is ‘MOM -sing , where ¢ is the angle between MM and a.

_ _ _ _ M,M xa
The distance from point M to a line through M parallel to a: d = H
a
X=X, +tm
Suppose, we have the parametric equations for the lineL: <y =y, +tn teR.
Z=17,+1p
Wehave t=2"% Y=Y _27%
m n p
Now we obtain the canonical equation for the line L: = ;X" _Y _ny" _Z —pZo .

Supposg, the points M, (X, ¥;,2;) and M,(X,,Y,,2,) belong to the line L. In this case, a=M,M, = (X, — XY, — Yi;Z, —Z,) -

The canonical equations for the line L: & = Y~ % _ 274
X,=% YoV 4,74

The line on the plane.
Consider the line L on the plane xOy. Suppose, the point (0; b) belongs to the line L. Denote by « the angle between the line L and Ox.
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Ya M(x;y

b
0 X

Fig. 4.3. The points (0; b) and M (x; y) are belong to the line L.
Let M (x; y) be a point on the line L. In this case, y —b = X-tg« (fig. 4.3).
Denote tga by k. We obtain the next equation: y—b=kx or y=kx+b.

The angle o >0, if we turn the line L shortly from Ox against the direction of hour hand. The number k is the angular coefficient of a straight line.

The general equation for the line L has the next form: Ax+By+C =0, A B,CeR.

If B=0,then y:—éx—g,k:tga:—é,b:—g.
B B B B

Suppose, the point M, (X,,Y,) belongs to the line L and its angular coefficient is equal k.
In this case, the line L has the next equation:
Y=Y, =K-(x—x,).
Further, let the points M (X, y;) and M,(X,,Y,) are belong to the line L. The line L has the next equation:
Y=% _ X=X
=% X=X
If M,(a;0) and M, (0;b) are the points of intersection for the line L with Ox and Oy then the line L has the next equation:

§+ % =1. (Fig. 4.4). It is the intersect form equation for the line L.
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b\N

ad a X

Fig. 4.4. The points (a; 0) and (0; b) are belong to the line L.

Let the point M, (x,,Y,) belongs to the line L and the vector n= Ai + B j is perpendicular to the line L.
In this case, the line L has the next equation:

A-(X—=X%X)+B-(y—y,)=0.

It is the normal equation for the line L.

Equations for planes in space.

Suppose plane 7 passes through a point M, (X,, ¥,,Z,) and is normal to the nonzero vector

n=Ai+B]j+Ck=0.Then r isthe set of all points M (X, y,z) for which M,M is orthogonal to n . (Fig. 4.5).

Fig. 4.5. The vector M M is perpendicular to the vector n.

Thatis, M, lieson 7z if and only if n-M,M =0.
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This equation is equivalent to

A-(X=%)+B-(y-Yy,)+C-(z—12,)=0.

Plane through M (X,, ¥y, Z,) normal to n= Ai + B j +Ck . Vector equation n-M,M =0.
Component equation A-(x—X,)+B-(y—-Yy,)+C-(z—2,)=0.

Example. Find an equation for the plane through M (-5;0; 4) perpendicularto n=3i+2j—k .
3-(x=(-H)+2-(y-0)+(-1)-(z-4)=0.

3-(x+5)+2y—-z+4=0

3Xx+15+2y—-z+4=0o0r 3x+2y—-2z+19=0.

A plane determined by three points.

Suppose the points M, (X, V;,2,), M,(X,,Y,,Z,) and M;(X,,Y,,2,) are belong to the plane 7.

In this case, the triple product M,;M - M;M,, - M;M, is equal 0, for any point M € r.

X=X Y- ZI-7
Therefore, [x, =%, Y,—-Yy, Z,—17|=0.
X3=X Ys— Y1 Zz3— 4

|A%, + By, +Cz, + D|

The distance from the point M (X,, ¥,,Z,) to the plane = (Ax+ By+Cz + D =0) is determined by the next formula: d =
JA? + B2 +C2

Angles between planes; lines of intersection.
The angle between two intersecting planes is defined to be the(acute) angle determined by their normal vectors: (fig. 4.6).
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Fig. 4.6. The angle between two planes is obtained from the angle between their normals.

Example. Find the angle between the planes 3x -6y +5z—-15=0 and 2x+Yy—-2z-5=0.

Solution. The vectors n, = (3;—6;5) and n, = (2;1;—2) are normals to the planes.

n-n, _ 6-6-10 _ -1 10
nj-jn,| V9+36+25-Va+1+4 70-49  3J70°

COoSp =

. 10
We have cose <0, therefore ¢ €(90°;180°). In this case, cosa =|cOS¢@|= ——.
Here o denotes the angle between two planes, ¢ is the angle between two vectors n_1 and n_2

10 10
= =0,40
3J70 3-837

o =arccos(0,40) = 66,4

CoOSa =

Ax +By,+Cz, + D, =0

The intersection L of two planes 7, (Ax, + By, + Cz, + D, =0) and 7, (AX, + By, + Cz, + D, =0) has next equations: L : .
Ax, +By,+Cz,+D, =0

It is the general equations for the line L.

Example. Find parametric equations for the line in which the planes 2x -5y -z -15=0(x,) and 3x+2y+2z-1=0(r,) intersect.
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Solution. We find a vector parallel to the line and a point on the line and use the canonical equations for the line L.
n =(2-5-1), n,=(321). a=n xn,. Inthiscase a|| 7, and a|| z,. Therefore, a|| L.

i j ok
a=[2 -5 —1=i-(-5+2)—j-(2+3)+k-(4+15)=-3i—5j+19k.

3 2 1

On the other hand, let us find a point M (X, Y,.2,) € L.

In this case, M, e 7, and M € 7,:

{Zx0 -5y, -2,-15=0

. There are infinitely many solutions for the system. Suppose, z, is equal 0.
3%, +2Y,+2,-1=0

{2x0—5y0—15=0 (-3) {—6x0+15y0+45=0 }

3%, +2y,—-1=0 -2 6%, +4y,—2=0
43 215 70 35
19y, +43=0,y,=——, 2%, =5y,+15, 2x,=———+15=—, X, =—.
Yo Yo="19 0 =20 ARET 19" ™ 19
M, §;—E;O el.
19 19
35 43
x—E y+E 70
Therefore, the line L has the next canonical equations: 3 = = = 19
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§5. Quadratic Curves.

We assume that a rectangular Cartesian coordinate system Oxy is given on the plane.

An equation of the second degree with two variables is an equation of the form:

AP+ Bxy +Oy? +Dx+Ey+ F =0, A*+B>+C?#0. 5.1) I

Line (curve) of the second order is the set of point on the plane, the coordinates of which satisfy any equations of the second degree (5.1).

Lines of the second order are a circle, an ellipse, a hyperbola, a parabola. Let as consider the equations of these lines in the simplest (canonical) form,
which is achieved by a certain choice of the coordinate system.
5.1 Circles.

Definitions. A circle is a set of points in a plane that are equidistant from a fixed point N(a,b). The fixed point is called the center. The line segment
that joins the center with any point of the circle is called the radius R. (fig. 5.1).

The canonical equations of the circle.

(x—af +(y-by =R>. (65.2)

67



0 a

=V

Figure 5.1.

Equation of a circle centered at the origin (5.3) is known as the canonical equation of the circle.

x? +y2 =R>. (5.3)

X =Rcost

If t is a real parameter, then { .
y =Rsint

are parametric equations of the circle. By elimination the parameter t, we return to the canonical equation.

5.2 Ellipses

Definitions. An ellipse is the set of points on the plane the sum of whose distances from the two fixed points is a constant.

These two fixed points F; and F,,|FF,|=2c are called the foci (plural of focus).
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One of Kepler's laws is that the orbits of a planet in the solar system are ellipses with the sun at one focus. In order to obtain the simplest equation for an ellipse,

we place the foci on the Ox -axis at the points £(c;0), F,(-¢;0), so that the origin is halfway between the foci. Let the sum of the distances from a point

on the ellipse to the foci be 2a > 0(2a > 2¢), we obtain the canonical equation of the ellipse:

In this equation the numbers a >b; b >0 and a, b, c are related as follows:

A =a’ b, (5.5)

Figure 5.2.
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Figure 5.3.
The line segment joining the vertices (-a;0) and (a; 0) is called the major axis. Numbers a and b are called the semi-axes of the ellipse, a — major semi-
axis, b — minor semi-axis.
The corresponding points 4;(a;0); 4,(—a;0); B,(0;b); B,(~5:0) are called the vertices of the ellipse (these are the intersection points of the ellipse with the

coordinate axes), the point 0(0;0) is the center of the ellipse. The ellipse given by equation (5.4) is shown in fig. 5.2.

The eccentricity of an ellipse is the number ¢ (epsilon), equals to the ratio of the distance between ellipse foci 2c to the length of the major axis 2a:

C
e=— (0<g<1,because c<a).
a

Remarks. 1) For a<b equation (5.4) also defines an ellipse, but its foci lie on the Oy axes, while ¢* =b* —a?; F;(0;—c); Fz(o;c);s=§ (fig. 5.3).

2) If a=b, then equation (5.4) defines a circle of radius a centered at the origin: x>+ »* =a*. In this case, ¢=0. Therefore, a circle is a special case of an

ellipse with coinciding foci, withe=0.
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3) The equation of an ellipse with axes parallel to the coordinate ones has the form:

(X—?Co)2

_ 2
+(y yO) — 1’

6.7

a? b2

where x,, y, — are the coordinates of the center of the ellipse.

X =acost

4) Equations: { , te0;2n], are the parametric equations of the ellipse.

y=bsint

5.3 Hyperbola

Definitions. A hyperbola is the set of all points in a plane, modulus the distances from each of which to two given points, called foci, is a constant value,
less than the distance between the foci, and different from zero.

If the focuses of the hyperbola 1 ang 2> FF|= 2C, locate on the Ox axes symmetrically with respect to the origin: Fl(c?o), (- C;O); and denote the

h 2a(0<a<c)

modulus of the difference from the point of the curve to the foci throug , then the canonical equation of the hyperbola looks like:

x* ﬁ:]

(5.8)
a’ b’

where 5>0 and ¢ =a® +b>. (5.9)

The hyperbola (5.8) intersects the Ox axes at the points 4 (a;0); 4,(-a:0), which are called the vertices of the hyperbola, and the hyperbola does not
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intersect the Oy axes. Any hyperbola has two vertices.
The axis of the hyperbola that it intersects is called the real axis, and the one that does not intersect is the imaginary axes. The numbers a and b are called

semi-axes of the hyperbola; (a —real, b — imaginary semi-axes). The point 0(0;0) is called the center of the hyperbola.
Two intersecting lines y :iéx are the asymptotes of the hyperbola. With unlimited removal from the origin, the hyperbola approaches its asymptotes
a

infinitely close without crossing it. The hyperbola (5.8) is shown in fig. 5.4.
Figure 5.4.

The eccenyricity of the hyperbola is the number ¢ (epsilon), equal to the ratio of half the distance between the foci of the hyperbola to its real semi-axes:

¢
e=— (e>1,because ¢ >a).
a

Remarks. 1) If the foci of the hyperbola lie on the Oy axes, then the equation of the hyperbola has the next form:
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The real axis of the hyperbola (5.11) is the Oy-axes, and the imaginary axis is the Ox-axes. Hyperbolas given by equation (5.8) and (5.11) are called

conjugate. Conjugate hyperbolas have the same asymptotes, and the real axes are perpendicular. For hyperbola (5.8) ¢ = %. It is shown in the fig. 5.5.

y

S

Figure 5.5
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2) The equation of a hyperbola with axes parallel to the coordinate ones has the form:

where (x,1,) — are the coordinates of the center of the hyperbola.

5.4 Parabolas

Definitions. A parabola is the locus of points, which are equidistant from a given point F and a line L. The point F is called the focus. The line L is called the
directrix of the parabola.
If the distance from the focus F to the directrix L is denoted by p, and the focus F is placed on the Ox-axis, which is perpendicular to the directrix L, and

the Oy-axis is in the middle between the focus and the directrix parallel to the Oy, then the parabola is given by the equation:

y?=2px, (5.13) I

The equation is called the canonical equation of the parabola (Figure 5.6).
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(IS0

Figure 5.6
The number p equal to the distance from the foci F to the directrix L, is called the parameter of the parabola, the point 0(0;0) is its vertex, and the Ox-
axes is the axis of symmetry of the parabola. The directrix equations L is: x = —g . Eccenyricity for parabolas by definition is considered to be equal

to1l: e=1.

Remarks. 1) The equation »? =—2px also specifies a parabola that is symmetric with respect to the Ox-axes (fig. 5.6). The focus F has coordinates

F[—%;Oj , and the equation for directrix has the next form: x = g.
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Pt — —dnx

rages

Fig 5.7. directrix.

2) The equations x* =2py; x> =—2py also specify [ abolas, but are symmetrical with respect to the Oy-axes. The parabola x> =2py has a focus F(O; P], the
2

equation of the directrix y= —% (fig.5.8). For a parabola x* =—2py the focus F(o;_gj, and the equation for the directrix =§ (fig. 5.9).
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x? = 2py
(4
L F(E'O
0
p
) JupekTpuca
Fig. 5.8.
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Fig. 5.9.

JupekTpuca

N | o

x* = —2py

3) Parabola equations with symmetry axes parallel to coordinate axes have the form:  (y—y,  =2p(x—x, % (x—x, ) =£2p(v—y0)-

It is known that for any line of the second order on the plane there is a rectangular Cartesian coordinate system in which this line is given by the canonical
equation.

Let us show with specific examples how to practically bring an equation of a second order line that it does not contain a term with a product of variables,
B=0in (4.77), to the canonical form.

Example. The second-order line is given by the equation.
32 —12x—6y+11=0.
Reduce the equation to the canonical form, give the detailed description of the curve and draw it.

Solution. This equation is not canonical. Let's select the full square, which includes all the terms with the variable y, and the coefficient at y> must
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be taken out of brackets.
3% —2y)-12x+11=0 = 3((y? ~ 2y +1)-1)-12x +11=0

3(y—1f -3-12x+11=0=3(y-1f =12x -8 = (y 1) =4(x—§}

Applying the parallel transfer transform X = x—%; Y =y -1, from the last equation we obtain the canonical equation Y* =4X . From here we can see

that the line in question is a parabola symmetrical with respect to the O1X-axes.
To draw this line, let's draw both the Oxy and O:XY coordinate systems in one picture. With parallel transfer, the coordinate axes move parallel to

themselves, so to determine their location, it is enough to determine the position of the new origin.

At the point O1 : X =0and Y =0, then, x:%; y=1. Through the point ol(g;lj we draw axes co-directed to the axes Ox u Oy, and we get a new

coordinate system. In this system, we draw a parabola Y =4.X , whose vertex is at the origin, and the branches are directed towards the positive direction

of the O1X symmetrically to this axis (fig. 5.10).

y Y
>
3y2-12x—6y+11=0 %
1 01 X
OE X
3
Y2 =4X

Fig. 5.10.
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Example. Simplify the equation 2x? +5y* -12x+10y+13=0 by using origin translation. Construct a line defined by this equation.

Solution. Let’s complete the full squares by the variables x and y, respectively.
2(x2 —6x)+ S(yz +2y)+13 =0

22 —6x+9)-18+5(y2 +2p+1)-5+13=0

2x=3P +5(y+1f =10 =

(3P GerP |
5 2

2 2
Denote by x —3 =X,y + 1 =Y, we get the canonical equation of the ellipse XT+Y7 =1. The origin of a new coordinate system is the point 01(3, -1);

the O1X, O1Y axes are parallel to the Ox and Oy axes respectively. Semi-major axis of the ellipse a =+/5 , semi-minor axis 5 =+/2. Let's draw a curve
in fig. 5.11.

|4

-1

(x=3° (y+D* |
5 2

Fig. 5.11.

Example. Complete an equation for a circle that has a center at a point N(2;-5) and a radius of 4.
Solution. Let's substitute the values of the coordinates of the center and radius into the equation (5.2), we get (x—2)* +(y+5)* =16.

Example. The ellipse equation is given 24x? +49y% =1176 . Find: 1) the length of its semi-axes; 2) focal points; 3) eccentricity.
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2 2
Solution. Reduce the ellipse equation 24x* +49,? =1176 to the canonical form (4.80), dividing both parts of the equation by 1176: z—9+ Y__1, from

E:
which the following relations follow:
a’>=49,p> =24, 1. e. a=7 — semi-major axis; b =26 — semi-minor axis.
Using the equality (5.5), let's find ¢ =a® —b* =49-24=25c=5. S0, F(5:0), F,(-5:0).

According to the formula (5.6) ¢ =< =
a

| »

Example. Complete an equation for an ellipse passing through the points Ml(z;—4\/§) Mz(— 1;2\/3).

2 2
Solution. We look for the ellipse equation as: x—2+Z—2=1. Since the ellipse passes through the points M;, M, , their coordinates satisfy the ellipse
a
equation: "1

Multiplying the second equality by (—4) and adding with the first, we find: —1:—22 — -3, i.e. b? =64 . Substituting the resulting value »* into the second

2 2
equality, we get %+% =1, from where 4> =16. The ellipse equation sought is as follows: T—6+£—4 =1.
a

Example. The hyperbola equation is given 16x* —9y? =144 . Find: 1) the length of the hyperbola semi-axes; 2) focal points; 3) eccentricity; 4) asymptote
equations.

Solution. Divide both parts of the equation by 144, there by bringing it to the canonical form (5.8):
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1) From the last equation a® =9,4% =16, i. €. a=3 — the real semi-axes, b=4 — the imaginary semi-axis.

2) Using the equality (4.85): ¢2 =a® +b%, we get: ¢ =25, ¢=5.S0, F(50), F,(-50).

3) According to the formula (4.86) =< =§ :
a

4) The asymptote equations are: y = iéx. In our case y =i§x.
a

Example. Complete an equation for a hyperbola if its foci lie on the Oy axis and the distance between them is 10, and the length of the real axis is 8.

2 2
Solution. The equation sought is: Z—z—x—zzl . According to the condition 2b=8,2c¢=10. So, b=4,c=5. From (5.9) ¢> =4 +5>. Let's find the im-
a

2 2
—42 =9, 1.e. a=3. The desired hyperbola equation is: %_% =1.

aginary semi-axis a: a* =c? —b* =5

Example. The parabola is given by the equation x* =4y . Find: 1) the focus coordinates; 2) the directrix equation.

Solution. The parabola is given by the canonical equation x* =2py. Therefore, 2p=4, p=2 It is follows from here: 1) F(O;%) = F(0:1); 2)

y =—§:> y=—1 —is the equation of the directrix.

Example. Complete an equation for a parabola if its vertex coincides with the origin and the focus is at F(2:0).

Solution. Since the focus of the parabola is always on its axis of symmetry, in our case the axis of the parabola will be the Ox-axes, and

F(%;OJ:F(Z;O). Hence §:2, then, p=4. In this case, the canonical equation of the parabola would be y? =2px, i. e. in this case y*? =8x. Note that

the equation for the directrix has the next form: x = —g, e, x=-2.
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§6 Second-order surfaces

In this section we will consider only the rectangular coordinate system Oxyz.

6.1 Cylinders and cones

Let some line L and a straight line o intersecting L be given in space.

Definition. A cylindrical surface or cylinder is a surface formed by a straight line a when it moves parallel to itself so that it crosses the line L all the
time. The straight lines obtained by moving the straight line a are called the generators of this cylinder, and the line L is its guide. If the cylinder has
an axis of symmetry, and the guide lying in a plane perpendicular to this axis is a circle, then the cylinder is called circular.

Note that if one of the coordinates is missing in the equation of the surface, then this equation defines a cylinder with generators parallel to the coordi-
nate axis defined by the missing coordinate. The equation of the guide of this cylinder lying in the coordinate plane perpendicular to the generators
coincides with the equation of the cylinder itself.

So, the equation F(x,y)=0 defines a cylinder with generators parallel to the Oz axis. If this equation is considered in the Oxy coordinate system (i.e. in
the plane z = 0), then we get the equation of the guide for this cylinder.

The equations F(x,z)=0 and F(y,z)=0 define cylinders with generators parallel to the axes Oy and Ox, respectively.

Let some line L and a point O” be given in space.

Definition. A conical surface or cone is a surface formed by straight lines passing through O “and intersecting the curve L. The lines that make up the
cone are called its generators, and the point O’ is its vertex. If a cone has an axis of symmetry, and all its generators are inclined to it at the same

angle, then the cone is called circular.

6.2 Canonical equations of second-order surfaces

Definition. A surface of the second order is the set of all points of space satisfying in some coordinate system some equation of the second degree, i.e.

an equation of the form
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Ax? + By? + Cz? + Dxy + Exz + Fyz+ Gx + Hy + Kz + R =0 .(6.1) I

Equation (6.1) is called the general equation of the second-order surface (coefficients A, B, C, D, E, F are not equal to zero at the same time).
For any surface of the second order in space, there is a rectangular Cartesian coordinate system in which this surface is given by the canonical equa-

tion. We list all fundamentally possible types of canonical equations of the second degree with three variables and thus classify surfaces of the second
order.

2 2 2
Xt y° oz o :
2 42X 45 1 —ellipsoid (fig. 6.1);
o psoid (fig. 6.1)
P ) . L
a_2+b_2+c_2:—1 — imaginary ellipsoid,;
2 2 2
x_2+y_2+z_2:o — point 0(0,0,0);
a b c
2 y? 72 _ _ L
Stz ——==1 — single-cavity hyperboloid (fig. 6.2);
a“~ b® ¢
2 y2 72 _ e
— +<5——=-1  —double-cavity hyperboloid (fig. 6.3);
a“ b° c
2 y? 22 )
S+ -—5=0 —a cone of the second order (fig. 6.4);
a~ b® c
X2 y2
SANRE A — elliptical paraboloid (fig. 6.5);
a2 p2
X2 2
2 47 — elliptical cylinder (fig. 6.6);
a’ b2
x2 2
—2+£—2 1 — imaginary elliptical cylinder;
a
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[\

2
x—2+y—2:0
a b
Xy
a? b2
2 yz
=1
a b
<y
a’ b
y2=2px

S o<
[
o

=0 or

Q= Q=
+

— straight line (Oz axis);

— hyperbolic paraboloid (fig. 6.7);

— hyperbolic cylinder (fig. 6.8);

Il
(el

— a pair of intersecting planes;

— parabolic cylinder (fig. 6.9);
— a pair of parallel planes;

— double plane;

— a pair of imaginary parallel planes.
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Fig. 6.2.
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Fig. 6.4.

Fig. 6.6.
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The numbers a, b, and c in the equations of an ellipsoid, two-cavity and one-cavity hyperboloids, a cone of the second order, elliptic and hyperbolic
cylinders are called their semi-axes. All these surfaces are symmetric with respect to all coordinate planes and with respect to the origin. The intersec-
tion points of a two-cavity hyperboloid and an elliptical paraboloid with axes of symmetry are called their vertices. The vertex of a cone is its center of
symmetry.

In order to determine the type of surface using the canonical equation without formally memorizing the equations, it is useful to reason as follows.

1) If the canonical equation does not contain one of the variables, then it is one of the cylinders. At the same time, its generators are parallel to the
coordinate axis determined by the missing variable, and the equation of the guide lying in the coordinate plane perpendicular to this axis coincides with
the equation of the surface itself.

2) If the canonical equation contains all the variables, check if they are all squared. If there is a summand of the first degree, then it is one of the parab-
oloids. Which one of them is easy to understand on the left side of the equation.

3) If there are squares of all three variables in the canonical equation, let's look at the signs of the coefficients for squares. In the case when all these
coefficients are of the same sign, we have either an ellipsoid, real or imaginary, or a point. When a=56=c using the ellipsoid equation, we obtain a
special case — the equation of the sphere.

4) If the squares of all three variables are present in the canonical equation, but they are of different signs, then the surface under consideration is either
one of the hyperboloids or a cone of the second order. The cone is distinguished by the fact that it passes through the origin, which is easily checked by
substitution. Since there are only three variables, then two coefficients with squares will have the same sign, and the third will have the opposite sign.
Thus, two variables will be equal, and the third one will be special. A cone or hyperboloid is always "elongated" along an axis defined by a special
variable. To distinguish a one-cavity hyperboloid from a two-cavity hyperboloid, this special variable should be set equal to zero. If an ellipse is ob-
tained in the section, then the hyperboloid is single-cavity. If the empty set is obtained than the surface is double-cavity.

Example. Construct a body bounded by surfaces
x2 +y2 +z°2 =4, x? +y2 =3z

Solution. The body is bounded from below by the surface of the paraboloid: x* +y? =3z,
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and from above by the surface of the sphere: x2+12 +22 =4.

The body is shown in fig. 6.10.

Example. Construct a body bounded by the surfaces

x* 7

T-’-?:l’ x=0,z=0 (x>20,z20), y=3,y=-3.

2 2
Solution. The surface %+% =1 —is an elliptical cylinder. It is intersected by the planes x = 0, z = 0 (coordinate planes Ozy and Oxy). Along the

Oy axis the body is bounded by planes  y =3,y =-3 (fig. 6.11).

91



z
3

i

BEEE

L L7s [y
2




§7. Sequences

7.1 A numerical sequence.

A numerical sequence is understood as a function
X, = f(n) (7.1) , defined
on the set of natural numbers N. Briefly, the sequence is denoted as {xn} or Xp, N € N . The number x1 is called the first term of the sequence. The number x,

is called the second term of the sequence. The number X, is called the general term or variable of the sequence.

Most often the sequence is given by the general term formula. Formula (7.1) allows you to calculate any member of the sequence by the number n, from
it you can immediately calculate any member of the sequence.

So, the equalities v, =n? +1, z, =(-)™n, y;, :l Un =n—_1, ne N define, respectively, the sequences:
n n

v, = {2510,....n* +1,..§

zn_hz -34,...(-1)
IR }
un:{o n;l}

A sequence {xn} is called bounded if there exists a number A7 >0 such that for any ne N the inequality |x,|<M holds.

l\)IH I\J|I—‘
Wl wll—\

»lw

Otherwise the sequence is called unbounded. It is easy to see that the sequences y, and u, are bounded, and v, and z, are unbounded.
A sequence is called increasing (non-decreasing) if the next inequality holds for any ne N : Xn+1 > Xn (xn a2 xn).
Similary, a decreasing (non-increasing) sequence is defined. All these sequences are called
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monotone sequences. The sequences V,, Y, and up, are monotonic, and z,, is the non-monotonic sequence.

If all elements of the sequence are equal to the same number c, then it is called a constant sequence. Another way to set a sequence is the recurrent way
to set a sequence. It sets the initial element (the first member of the sequence) and the rule for determining n-th element by (n-1)-th.

Xn = f (Xn-1).

Thus, xp = f (x), X3 = f(x2),...

With this method of setting the sequence to determine the 100-th element, you must first count the first 99-th elements.

7.2 Limit of a numerical sequence.

You can see that the members of the sequence u, approach to the number 1 indefinitely. In this case, it is said that the sequence of u,, ne N tends to
the limit of 1.
A number a is called the limit of the sequence {xn} if, for any arbitrarily small positive number &, there is such a finite number N, depending on &, that

the inequality |x, —a| < & holds for all n> N .

In this case, write lim X, =a or x,, — a and say that the sequence {xn} has a limit equal to the number a.
N—o0 N—>00

It is also said that the sequence of {x,} converges to a.
In short the definition of the limit can be written as follows:

(Ve>03N(e):Vn>N=|x,—a<¢&) < lim x, =a.
nN—oo

Let's find out the geometric meaning of determining the limit for the sequence. Inequality |xn - a| < ¢ is equivalent to the inequalities —& <X, —a<eg or

a—¢& < Xy <a+ ¢ that shows that the element xn is in the ¢ - vicinity of the point a.

a—¢ a at+¢

94



Therefore, the definition of the limit of the sequence can be formulated geometrically as follows: the number a is called the limit of a sequence {xn}, if for
any ¢ - vicinity of the point a, there is a natural number N, such that all values of x» for wich n> N fall into the ¢ - vicinity(neighborhood) of the point
a.

It is clear that the smaller &, the greater N, but in any case, there are infinite number of members of the sequence inside the ¢ - neighborhood of the
point a, and only a finite number of them can be outside of it.

It follows that a convergent secuence has only one limit.

A secuence that has no limit is called a divergent secuence.

Such is, for example, the secuence {v, .
The constant secuence {X,}={C}, ne N has a limit equal to C.
Indeed, for V& >0 for all natural n, the inequality |x, —C|=|C —C|=0<¢ holds.

And this, according to the definition of the limit, means that lim {xn}: Iim C=C.
nN—o0 N—o0

7.3 Properties of the limit in inequalities.

Consider the secuences {xn}, {yn} and {zn}.

Theorem 7.1. If lim x, =a, lim y, =b and, starting from some number, the inequality x, <y, issatisfied, then a <b.( lim x, < lim y,).
nN—o0 nN—o0 N—o0 N—o0

Proof.

Let's assume that a >b. From the equality lim x, =a and lim y, =b it follows, that for any &> 0, there is such a natural number N(¢) that for all
n—oo nN—oo

n>N the inequality |x, —al<e and |y, —bj<e< a—-e<x,<a+e, b—e<y, <b+e will be satisfied.
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Take ¢ = aT—b . Than:

a-b a+b a+b
Xp>a—¢¢=a—-——=—— Xy, >——— and
2 2 2
y <b+g—b+a__b—a_+b<3y <a_+b
" 2 2 n= 2

Therefore, X, > Yp, . This contradicts the condition, that X, < y,,. Therefore, a<Db.

Theorem 7.2. If lim x, =a, lim y, =a and the inequality X, <z, <Yy, is valid starting from some number N, then lim z, =a.
n—oo n—o0 n—oo

7.4 The limit of a monotone bounded sequence. Number e. Natural logarithms.

Not every sequence has a limit. We formulate without proof the condition of the existence of the limit for the sequence.

Weierstras’s Theorem 7.3. Any monotone and bounded sequence has a limit.

n
As an example of the application of this feature, consider the sequence x,, = [1+ l) ,neN.
n

By the Newton binomial formula

(a+b)" =a" Jrﬂ'an—lb+ n(n2'—1) a"2p2 . . n(n—l)(n—Zr)]'...(n—(n—l)) N

Assuming a=1 b = 1, we get
n

(1+1jn :1+EE+”(n_1)i+”(”_1)(n_2)i_“+ n(n-H(n-2)..0-(n-1) 1
n In 2l p2 3 n3 nl N

e 3ot Bt 25
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n
(1+1j :1+1+1(1—1j+1(1—1j(1—3J+...+1(1—1j(1—3]( —”—_1j (7.3)
n 2! n) 3 n n ni n n n
1+1+1 1 +i 1—1 2 +...+i _1Y1-2)_n-d £2+1+1+...+1<
2! n) 3 n n ni n n n 21 3 n!
n
ol
<1+(1+%+i+i+...+ : ]:1+—:1+2(1—inj<1+2-1:3

22 28 oh-1 2

n
=2< (1+ 1] < 3. That is, the sequence is bounded. We show that it is monotonically increasing. It follows from the equation (7.3) that as n increases, the
n

n
number of positive terms in the right-hand side increases. Therefore, the sequence is increasing and (1+ lj >2.
n

So, the sequence is bounded and the inequality holds for all n
n
2< (1+ ij <3.
n
1 n
Therefore, based on the Weierstras’s theorem, the sequence x,, = (1+ —j , ne N has a limit, usually denoted by the letter e.
n

lim (1+ ijn =e (7.6)

n—oo n

The number e is called Neper's number. The number e is irrational its approximate value is 2,72 (e=2,71828...).
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§8. Function limit.

8.1. Limit of the function at a point.

Let the function f(x) be defined in some neighborhood of the point Xq, exept, perhaps, the point Xq itself.
We formulate two equivalent among themselves definitions for the limit of a function at a point.
Definition 1. (in the language of sequence, or by Heine). The number A is called the limit of the function f(x) at the point xg (or at x — x, ), if for any sequence

of valid values of the argument X, n € N (X, # Xg) convergining to Xp, the sequence of corresponding values of the function f(x,), n€ N, converges to

the number A. In this case, write lim f(x)=A or f(X) > A at x> x,.
X—>Xg

Geometric meaning of the function limit: lim f(x) = A means that for all points x that are sufficiently close to the point Xg, the corresponding values
X—>Xg

of the function f(x) are in the small neighborhood of the number A.
Definition 2. (in € - & language or by Cauchy). The number A is called the limit of the function at the point Xg(or at x — x,), if for all arbitrarily small
positive number ¢ there is such a positive number &, depending on &, that for all x satisfying the inequality |x—xo| <8, the inequality |f (x)— A|<¢ is

satisfied. Write down lim f(x) = A .(In short it can be written as follows).
X—>Xg

This definition can be briefly written as (Ve >0)38(e) >0, 0<[x—xg| <5 = |f(x)-4|<e.

The geometric meaning of the limit for the function A= lim f(x): if for any € > 0 neighborhood of point A there is 6(¢) > 0 neighborhood of point Xg,

X—>X0

that for all x = x, from this & — neighborhood, the corresponding values of the function f(x) liesinthe interval (A—¢; A+¢)
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8.2. One-sided limits.

In determining the limit of the function f(x), it is assumed that x tends to X in any way: remaining smaller that X, ( to the left of Xp), larger than Xg( to the
right of xg), or fluctuating near the point Xg.
There are cases when the method of approximation of the argument x to Xg significantly affects on the value of the limit of the function. Therefore, the

concept of one-sided limits is introduced.

The number A, is called the limit of the function on the left at the point Xg, if for any arbitrarily small positive number € > 0 there is such a positive number
3(e) depending on ¢ that as soon as X € (X, =&, X,) the next non-equality holds: |f(x) - A |<e.
Briefly, lim f(x)=A < Ve>0 35(e): VX e (X =36, %) = |[f(X)—Al<e.

X—>X0—

Similary, the limit of the function on the right is defined:
Ve>036(e): VX e (X, X% +0) = [f(X) - A |<e < lim f0=A,.
X—>XQ +

The limits of the function on the left and the right are called one-sided limits.

Note, that if there is lim f (x) = A , then there are also both lim . f(x)=A and lim . f(x)=A,. Moreover A=A =A,.
X—X0 +

X—>X0 X—>XQ —

m f(x) = A and they are equal, then there is a limit at the

li
x—X0+0

The opposite statement is also true: if there are both one-sided limits lim . f(x)=A,

X—>X0—

99



point xo lim f(x)= A equal to the value of the one-sided limits of the function f(X).
X—>XQ

If A #A,, then the limit of the function at the point Xy does not exist.

8.3. The limit of the function at x tending to infinity (x — o).

Let the function y = f (x) be defined in the interval (—oo, + ).

A number A is called the limit of the function for x — <o, if for any arbitrarily positive number ¢, there exists a number M (&) >0 that depends on ¢, such
that as soon as |x| > M the next inequality holds: |f(x) - A|<¢.

In short, this definition can be written as : V& >0 IM(e) > 0: vx [X>M = |[f () - A|<e <

XILTmf(X):A ,XILrpwf(x):A :

Geometrically, the meaning of this definition is as follows: for Ve >0 3 M(g) > 0 that at |x| >M < Xe (-0, —M)uU (M, +0) the corresponding

values of the function f(x) fall into e-neighborhood of the point A.

8.4. Infinitely large functions (i | f).

A function y = f(x) is called infinitely large for x — x,, if for any number A >0 there is a number (M) > 0 such that for all x sitisfying the inequality

0<[x—X,| <&, the inequality |f (x)| > M is satisfied. This can be written as lim f(x)=c or f(x) > at x> x,.
X—XQ
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In short it can be written as follows:
VM >036(M)>0vx:0<[x-x|<5—> |f(X)|>M < lim f(x)=co.
X—>XQ
For example, the function L5 is an infinity large at x — 5.
X+

If the function tends to infinity at x — x, and takes positive values in the 5 — neighborhood of the point Xg, then we write lim f(X) = +o.

X—>XQ

If the function tends to infinity at x — x, and takes negative values in the 3 — neighborhood of the point Xp, then we write lim f(x) =—o0.

X—>XQ

The function y = f (x), given on the entire number line, is called infinitely large for x — o, if for any A7 >0 there is such a number N(M) > 0 that for

all x satisfying the inequality x| > N, the inequality |f (x)| > M is satisfied.

X—>=
2

For example y =tgx is an infinitely large function with x tending to % (Iim tgx = oo} :

Note, that if the argument x, tending to the infinity, take only natural values, i.e. xe N , then the corresponding infinitely large function becomes an
infinitely large sequence.

It is easy to see that every infinitely large function in the neighborhood of the point Xg is unbounded in this neighborhood. The converse is not true: an
unbounded function may not be an infinitely large function. (For example y = xsin x).

However, if lim f(x)= A, where A is a finite number, then the function y = f(x) is bounded in some neighborhood of the point Xg.

X—XQ

Indeed, from the definition of the limit of the function, it follows that for x — x, the condition |f (x) — A/ < & s satisfied.
S A-e<f(X)SA+e VXe(X,— &% +¢€).

This means that the function f(x) is bounded.
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§9. Infinitely small functions
9.1. Definitions and basic theorems.

The function f(x) =Yy is called infinitely small for x — x,, if lim f(x)=0. 9.1)
X—>XQ

According to the limit definition, this means that Ve >0 35(): vx, 0<|x-x|<8= |f(X)|<&.

Similarly, an infinitely small function is defined for x - x,+0, x > X, =0, X — 400, X —> —0. In all these cases f(x) —>0.
Examples of infinitely small functions:
y=x*for x>0, y=x—-2 for x—>2, y=sinx for x >k, keZ.

Theorem 9.1. The algebraic sum of infinitely small functions is an infinitely small function.

Let a(x) and SA(X) be two infinite small functions[ lim a(x)=0 and lim 5(x)=oj .
X—XQ X=X

According to the definition of the limit of the function

5 & & &
Ve>0= VE >03 61(§j and 52(5) such that |ou(x)| < % 0 <|x—xy| < 51(5)

& &
1B(X)| < > 0<[x—x|< 52(5}
Let us define by 6 =min(&,, 5,) = |a(x)| <§ for all x satisfying [x —x,| < &

1B(X)| < g for all y satisfying [x —x;| <& = |a(X) + B(X)| <|a ()| +|B(x)| < g +% <eg.

Thus, Ve>035:vx, 0<|x—xp|<8=
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la(X)+ B(X)| <& < XIErQO (a(x)+ B(x))=0.

That is a(X) + £(x) - is an infinite small function.
Theorem 9.2. The product of an infinitely small function by a bounded function is an infinitely small function. (If lim a(x)=0. g(x)<M VxeR=
X—>X(
lim a(x)-g(x)=0).
X—>XQ
Inverstigation 9.1. Since every infinitely small function is bounded, then the product of two infinitely small functions is an infinitely small function.

(If lim a0 =0, im £(x)=0= lim (a(x) B(x))=0).

Inverstigation 9.2. The product of an infinitely small function by a number is an infinitely small function.

(If lim o(x)=0. y =const = I|m y-a(x)=0).

X—>X(

Theorem 9.3. The quotient of the division of an infinitely small function at the point Xy by a function that has a non-zero limit at the same point is an
infinitely small function

(llIl’l (X,()C) 0, I|m f(X)iO: ||m a(X)

=0).
—xp —x0 f(X) )

Lets lim a(x)=0 and I|m f(x)=a=0. The function a _ 1 a(x), where a(x) is infinitly small function and % is a bounded function.

30 f(x) ()

Then according to the theorem 9.2 the product of these functions is the infinitely small function.
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Theorem 9.4. If a(x) is infinitely small function at the point X («(X) # 0), then the inverse function % is an infinitely large function at the same
a(x

point Xg.

And per turnover: if the function is infinitely large at the point Xg, then its inverse function is infinitely small at this point.

Let lim a(x)=0 and lim B(x)=0. Then
X—>XQ

X—>X(

Ve>038:vx 0<|x=x|<d= |a(X)|<e.

1
>— &
g

>M where M :1.
£

Then

a(X)

a(X)

Therefore, a(X) is an infinitely large function.
Similarly, the converse statement could be proved.
Remark. The proofs of the theorems were carried out for the case x — X,, but they are also valid for the case x — .
9.2. Relationships between a function, its limit and an infinity small function.
Theorem 9.5. If a function has a limit equal to A, then it can be represented as the sum of a number A and an infinitely small function.

Proof. That is, if lim f(x)= A, than f(xX)=A+a(x), where lim a(x)=0.
X—>XQ

X—>X(
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Let lim f(x)=A, = Ve >0335(): vx 0<|X—X0|<8:>|f(x)—Al<8<:>

X—>XQ

(F(9—A) Q<& lim (F()-A)=0= lim a(x)

= f(X)—A=a(x) = f(X) = A+ a(X). The proof is finished.

Theorem 9.6. (inverse theorem). If the function f (X) can be represented as the sum of the number A and the infinitely small function «(x), then the number
A is the limit of the function f(x) for x—» xg .
Thatis, if f(X)=A+a(x),then lim f(x)=A. Indeed, let f(x)=A+a(X), where lim a(x)=0.

X—>XQ

X—>X(
Then Ve>038:vx 0<[x-x|<e |a(X)|<e = [f(X)—A<e

= lim f(x)=A.

X—>XQ

9.3. Basic limit theorems.

Consider theorems that make it easier to find the limit of a functions. Formulations and proofs of these theorems for the cases when x —x, and x — o

, are similar.
Theorem 9.7. The limit of the sum(subtraction) of two functions is equal to the sum(subtraction) of the limits of these functions.

Indeed, let lim f(x) = A, lim ¢(x)=B. Then, according to the Theorem 9.5 on the relation of a function, its limit, and the infinitely small function, we
X—>XQ X—>XQ

can write:
f(X)=A+a(x), (x)=B+ B(x), where lim a(x)=0, lim B(x)=0.
X—>X() X—=>X0

Then, f(X)+@(x)=A+B+(x(x)+ £(X)) where
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xIirrxl (a(X)+ (X)) = XIirrxl a(X)+ XIlrrx1 B(X) =0= (the theorem 9.6) xIlrrxl (F(X)+p(X))=A+B= XIirrxl f(x)+ xI|_>rrx1 o(X) .

In the case of the subtraction of the functions, the proof is analogous. The theorem holds for the algebraic sum of any finite number of functions.

Corollary. A function can have only one limit when x — x,.

Proof. Indeed, let lim f(x)= A, lim f(x)=B. Than, according to the theorem 9.7 we have
X—>XQ

X—>XQ

0= lim (f(x)— f(x))= lim f(x)— lim f(x)=A-B=A-B=0=A=B.
X—>XQ X—>XQ X—>X0

The proof is finished.
Theorem 9.8. The limit of the product of two functions is equal to the product of the limits of these functions.

Proof. Indeed, let lim f(x)= A, lim ¢(x)=B.Then f(X)=A+a(X), ¢(X) =B+ £(X), where lim a(x)=0, lim B(x)=0
X—>XQ X—>X(0 X—=>X0

X—>XQ

= f()-o(x) =(A+a(X) B+ (X)) =
= AB+ (AB(X) + Ba(x) +a(x)B(x))= AB+0=AB= XIi%rrg f(x)- xILrTx] o(X) .
(Jim (AB(X)+Ba(x) +a(x)5(9)=0).

The proof is finished.

Note, that the theorem is valid for the product of any finite number of functions.
Corollary. The constant multiplier can be taken out of the limit sign.

Indeed, XIi%er1O(C- f (X)) = (the theorem 9.8)

lim(C-f(x))=IlimC- lim f(x)=C- lim f(x).
X—>X0Q X—>X0 X—=>XQ X—>XQ
Similarly, the limit of degree whith a natural exponent is equal to the same degree of the limit.

n

Indeed, lim (f (X)) = lim f(x)- lim f(x)-... lim f(x):( lim f(x))
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Theorem 9.9. The limit of the fraction is equal to the ratio of the limit of the numerator to the limit of the denominator, provided that the limit of the denomi-
nator is different from zero at this point.
Indeed, let lim f(x)=A, lim p(X)=B#0= f(X)=A+a(x), ¢(x) =B+ £(x)

X—XQ X—>X0

fO) _ A+a(x) :é+(A+a(x)_é]:é+ B-a(x) - A-A(X) _ A

o(xX) B+p(X) B (B+p(x) B) B B2 + B2A(X) E-H/(X)
B-a(x)— A- B(X)

x>x0  B?+B?B(X)

=0=y(x), where lim y(x)=0
X—>X0

lim f(x)
~ fim L) _ o A

%0 p(X) lim ¢(x) B’

Example. Calculate.

9.3. |im1(3X2—2X+7) = IimlBXZ—Iin112x+|iml?:3|iml3xz—2|irq X+7=31"-2.147=3-2+7=8.

= lim W— lim L]'G:E:_g

9.4. Ilim =
' xo2 (X—2)(x—4) xo2 x4 2

x—>2 X% —6x+8

X2 +14x-32 _(O)
0

If the numerator and denominator are substituted with the value x =2, then we get an ucertaintly of the form zero divided by zero.

In order to get rid of this unertainty, the numerator and denominator are decomposed into the simplest factors. Reducing the same factors allows us to

get rid of the uncertainty and get the final result

2+3+1

2 [
9.5, |imw=(fj—lim X 22321.
oo 4X°+2X+5 (o0 x+w4+7+7 4 2

X X

lim §:0, lim i:0, lim g:0, lim %:O.

X—>0 X X—00 X X—»0 X X—>0 X
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9.4. Signs of the existence of a limit.

Not every function, even a limited one, has a limit. For example, the function y =sinx at x — o has no limit. In many questions of analysis, it is
sufficient only to make sure that there is a limit.

In such cases, the signs of the existence of a limit are used.
Theorem 9.10. (about the limit of the intermediate function).

If a function f(X) is enclosed between two functions ¢(X) and g(x) tend to the same limit, then it is also tend to this limit.

That is, if lim ¢(x) = A, lim g(x) = A and (9.6)
X—>XQ X—>XQ
o(x) < f(x) <g(x), then lim f(x)=A. 9.7)
X—>X0

Indeed, from equality (9.6) it follows that, for any & > 0 there are 0, and J, for the point Xx,, in one of wich the inequality holds
lp(X)—A<e=-c<p(X)—A<e (9.8)

lg(X)-A<e=-e<g(x)-A<e (9.9)

Let 6 =min(J,, J,) , then in & - neighborhoot of the point x,, both inegulities (9.8) and (9.9) are satisfied.

We have (9.7) ¢(X) < f(x) < g(x) then o(x)— A< f(x)— A< g(X)— A which is equivalent to

f)-A<|lg()-A<e (9.10)

= Ve>036() Vx 0<|x—x|<8 [f(X)-A<e=

lim f(x)=A.

X—>XQ

Theorem 9.11. (on the existence of the limit for a monotone function).

If a function f(x) is monotonic and bounded at x < X, or at X > X, , then there is a left limit lim f(x) = f(x, —0) or right limit lim ; f(x)=f(x,+0)
X—>XQ +

X—>X0 -0

respectively.
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Corollary. A bounded monotone sequence {xn}, ne N has a limit.
9.5. The first remarkable limit.
sinx

lim

x>0 X

In other words, the limit of the ratio of the sin of the variable to its variable, provided that the variable tends to zero, equal to one.

=1.

Indeed, take a circle of radius 1 and denote the radianum of the angle MOB by x. Let 0 < x < % In the drawing |AM| =sin x, the arc MB is numeri-

cally equal to the central angle x, [BC|=tgx. It is easy to see that S0 < Secor vos < Sacos -

Based on the corresponding trigonometric formulas we get

1sinx<lx<1tgx: - divide by 1sinx>0
2 2 2 2

y
A

C

|
| tex

o

X
o “A /B X
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1

X sin x . . : : o : .
Weget 1< —<—— << 1<——<cosx. Since limcosx=1 and lim1=1, then by the sign about the limit of intermediate function lim

sinx  COSX X x—0 X0
Example. Find the next limits:

9.6. lim 33X =(9j _jim (5iN3%)-3x _ 3
x>0  2X x—0

0 3x-2X 2

9.7. Iimtg—xz(g)zlim sinx__xo x _1g
x-0 X 0

arctgx . arcsinx
g =1. lim =
X x—0 X

1.

As a consequence of the first remarkable limit: Iing

9.6. The second remarkable limit.

X—00 X

Iim[1+1j =e. (9.15)
Indeed: VxeR:n<x<n+LneN, where n=[X] - the whole part of x.

1 1 1 n X n+1
Then —<—<—, 1+isl+£§1+l, (1+L] s(1+lj S(Hlj
n+l X n n+1 X n n+1 X n
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nm(1+3j-(1+3j=nm[1+ij-nm(1+1j=e-1=e.
n—oo n n nN—oo! n n—ow n

Then, according to the theorem on the existence of the limit for the intermediate function

lim [1+ lj =e.
X—o0' X

If we put %: a and at X — o, 1 — 0, then (9.15) it will be written as
o

lim@1+a)'* =e. (9.16)

a—0

If the equality (9.16) is logarithmed by the base e, we get a logarithmic interpetation of the second remarkable limit.

jim N+ @) 4 9.17)

a—>0 o

The equalities (9.15) — (9.17) are called the second remarkable limit.

Example. Find the next limit.

N | X<
x| N

9.8. Iim(1+gj =[1"] = lim 141 =e’.
X—>00 X X—>00 5
2
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§10. Equivalent infinitely small functions.
10.1. Comparison of infinitely small functions.

As you know, the sum, subtraction and the product of two infinity small functions is the infinitely small function. The ratio of two infinitely small func-
tions can produce different results: be a finite number, be an infinitely large or infinitely small function, or do not tend to any limit at all.

Two infinitely small quantities are compared with each other by their ratio.

Let a(x) and S(x) - are infinitely small function at the point X,. Thatis: lim a(x)=0, lim B(x)=0.
X—>XQ

Definitions. -

If JL@O% =A#0(AeR),then a(x) and S(x) are called infinitely small of the same order of smallness.

If xIer)O % =0, then a(x) is called infinitely small function(infinitely small) of a higher order of smallness than £(x).
If lenQO % = oo , then a(x) is called an infinitely small of a lower order of smallness than 3(X).

If XILTO% does not exist, then «(X) and £(x) are called incomparable infinitely small functions.

Note, that these are the same rules for comparing infinitely small functions for x — 0, x — X, £0.
Examples. Compare infinitely small functions.
10.1. a(x) =3x*, B(X)=14x" at x —>0. Iirrg a(x)=0, Iingﬂ(x) =0. It is easy to check that

. 3x* 3
lim 5=
x->014x" 14

Therefore, according to the definition 1, a(x) and A(X) are infinitely small functions of the same order of smallness.
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10.2. a(x) =3x*, B(X)=7x at x —>0. Iirr(m)a(x):o, Iin?)ﬂ(x):o. Then

Therefore, according to the definition 2, a(x) is a infinitely small function of a higher order of smallness than £(x).

10.3. a(X) =tgx, B(x)=x* at x—0. lim ¢(x) =0, lim B(x) =0. Then

. tgx sin x . sinx .1 . 1
lim == lim ——— =lim -lim dim==1.1-0=00.
x—>0 X x>0 X.-COSX-X x>0 X x>0 COSX x—0X

Therefore, according to the definition 3, a(x) is a infinitely small function of a lower order of smallness than £(x).

10.4. a(X) = xsin% and S(x)=x at x —0. Iim0 xsin% as the product of infinitely small function by a bounded function. lim x =0. But lim () _ lim

x—0 x—0 ﬁ(x) x—0

Xsin 1 1
X = lim sin " This limit does not exist due to the periodicity of the function sinx.

X x—0

10.2. Equivalent infinitely small functions and basic theorems about them.

Among infinitely small function the equivalent infinitely small functions play a special role.

. .. ) . . sinx . . tgx
If lim a(x) =1, then this is denoted as a(X) ~ £(X). For example sinx~ x for x —0 since I|m0 —— =1.The function tgx~ x, because I|m0 gx =1.

x=>xo0 B(X) X X

Theorem 10.1. The limit of the ratio of two infinitely small functions will not change if each of them or one of them is replaced by an equivalent infinitely
small function.

Indeed, let a(x) ~ o', f(x) ~ p'forx — X,. Then

lim 2 _ i @)@ @) AX)

X—=XQ ﬂ(x) X—=XQ a'.ﬂ(x) .ﬂ' x=x0 o X=X ﬁ' '
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lim —,_11 I|m—, Thatis lim a(x) = lim 1,.
X—>X0Q ﬁ X—XQ ﬁ X—>X0Q ﬂ(x) X—>X0Q ﬂ
It is easy to check that lim a(x) = lim a9 _ = lim -2

X—>XQ ﬂ(x) X—>XQ ﬂ X—>XQ ﬂ(x) )
Theorem 10.2. The subtraction of two infinitely small functions is the infinitely small function of a higher order of smallness then each of them.

Indeed, let a(x) ~ B(X) to x > X,.

Then tim ZX) =A%) _ i, (1—@]:Iim1 tim 2% _1_1-0.

X—=XQ a(x) X—XQ a(x) X—=XQ X—XQ a(x)

Similarly, lim M:Xﬁrg (@—1j— lim a(x) —lim1=1-1=0.

x=x  B(X) B(X) =% B(X)  xox
Therefore, lim a(x) = B(x) _
x=x  B(X)

The converse is also true: if the difference between «(Xx) and A(x) is an infinitely small function of a higher order of smallness than «(x) and A(x),

then a(x) and S(X) are equivalent infinitely small functions. Indeed, since lim M=O, then lim 1—@ =0, thatis 1— lim A =0=
X—>X0 a(x) X—=>X0 a(x) X—=>X0 a(x)

lim &X;:l. That is a(x) ~ S(X).

X=>X0 (X

Similarly, if lim %zl then a(X) ~ A(X).

X—XQ

Theorem 10. 3. The sum of a finite number of infinitely small functions of different orders is equivalent to the lowest-order term.

Proof. We prove the theorem for two functions.

Let a(x) >0, B(x) > 0 for x = x,, and «(X) is infinitely small function of higher order of smallness than £(x), that is I|m ﬁg ; =0. Then
X
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lim 20800 _ i, (M+lj: im 2%, jim 1204121,
X—XQ ﬂ(x) X—XQ ﬂ(x) X—XQ ﬂ(x) X—XQ

Therefore, a(X)+ £(x) ~ B(X) for x — X,.

The summand equivalent to the sum of infinitely small function is called the principal part of this sum.

Replacing the sum of infinitely small functions with its main part is called discarding infinitely small functions of higher order.
Example.

2
10.5. Find the limit: lim X7 _jim X _jim 3X 3.
x-0  §in 2X x>08iN2X x>0 2x 2

Since 3x+7x° ~3xand sin2x ~ 2x to x—0
10.3. Applying equivalent infinitely small functions to computing limits.
Calculating limits. To solve uncertainties of the form [%), it is often useful to apply the principle of replacing infinitesimals with equivalent ones and

other properties of infinitesimals as you know sinx ~ x, tgx ~x for x—0.

Here are some more examples of infinitely small functions.

-, X X
2sin” sin—
Examples. 10.6. Iirrbl_)fﬁ: (gjzlim 2 _2im| —2| -1,

X
2 4 2
X2
Therefore, 1—cosx~? at x—>0.

: i arcsinx =t . 1 1 1
=0 X 0) |x=sin(arcsinx) =sint| t»0sint t-osInt lim t
t t-03int



Therefore, arcsinx ~ X.

x—0 5 0
2
 (Virx—1Viex+1) o 204x-1) 2 2
=lim =lim =1 2521'

x>0 ;(M+l) X0 x(\/1+x+1)_xlm3\/1+x+1

Therefore, v1+x -1 ~ g

The following are the most important equivalences that are used in calculating the limits.

1. sinx ~x(x—0) 6. e*-1~x(x—0)
2. tgx ~x(x—0) 7.a"-1~xlna (x—0)
3. arcsinx ~x(x—0) 8. In(L+x) ~x(x—0)
4. arctgx ~x(x—0) 9. log,(1+x) ~ xlog,e(x—0)
2
5. 1—cosx~x? (x—0) 10. (1+X)* ~ 1+kx, k>0(x—>0)

11, V14 x -1 ~ g(x—>0).

Examples. Find the next limits:

10.9. lim 92X _jjm2X_2.
x=>08jn3x x»03x 3

= =t,x="=Ilim =lim-=1.
X t t->0 t—0 t

1
10.10. lim x[ex -1J =

X—>00

1 1‘ e'-1 .t
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arcsin(x—l)_Iim arcsin(x—l)_Iim x- 1 1

10.11. lim = = =—=,
2B6x+4 o1(x-1D(x—4) -1(x-1)(x-4) 1-4 3

x=1 X
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§11. Continuity of a function.
11.1. Continuity of a function at a point.

Let the function y = f(x) be defined at the point x, and in some neigborhood of this point. A function y= f(x) is called continuous at the point x, if

there is a limit of the function at that point and it is equal to the value of the function at that point.
Thatis lim f(x)= f(xo) (11.1)
X—>X()

Equality (11.1) means that three conditions are hold:

the function f(x) is defined at the point x, and its neighborhood
the function f(X) has a limit at the point x,
the limit of the function at the point x, is equal to the value of the function at this point, that is, the equality (11.1) is satisfied.

Since lim x = x,, the equality (11.1) can be written as

X—=>X0

lim f(x)= f(lim x) = f(x,)- (11.2)

X—>X0

This means that when finding the limit of a continuous function y = f(x), you can go to the limit under the sign of the function, that is, in the function

y = f(x) instead of the argument x add its limit value x,.
. sin x
SIMXim T,
For example, lime X =ex>0 = =gl =e.
x—0

In the first equality, the function and the limit are reversed(11.2) due to the continuity of the function e*.

Example. Calculate.

1 1
11.1. A= IimOM: Iimol-ln(l+ x):limoln(1+ X)X = In(limo(1+ x)XJ:Inezl.
X—> X x—=>0 X X—> X—>
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Or by virtue of the equivalence of infinitely small functions In(1+ x) and x at x - 0:

. In(Q+x X
lim ( )=I|m—=1.
x—0 X X*)OX

We can give another definition of the continuity of a function at a point x,, based on the concept of the increment of an argument and the function.
Let the function y = f(x) be defined on some interval (a, b). Take an arbitrary point x; < (a;b) . Fof any X € (a, b), the difference (x —Xx,) is called the
increment of the argument x at the point x, and is denoted by AX:Ax=X-—X,. Hence X =X, + AX.

The difference between the corresponding values of the function f(x)— f(x,) is called the increment of the function f(x) at the point x, and is de-
noted by Ay: Ay = f(x)— f(x,) or Ay= f(x,+Ax)— f(X,).

Obviously, the increments Ax and Ay can be either positive or negative.

Let's write the equality (11.1) in the new notations. Since the conditions x — X, and x— X, — 0 are the same, then the equation (11.1) takes the form

lim ( ()= (%)) =0 or im Ay=0. (11.3)
X—>XQ X—>

Y,

f),
f (o)

The resulting equality is another definition of the continuity of a function f(x) at the point x,: a function y = f(x) is called continuous at a point x, if

it is defined at a point x, and its neighborhood and equality (11.3) holds, that is an infinitesimal increment of the argument corresponds to an infinitesi-

mal increment of the function.
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When investigating the continuity of a function at a point use either the first (11.1) or second (11.3) definition.
Example.
Inverstigate the continuity of the function:

11.2. y=sinx.
Solution. The function y =sinx is defined for all xeR.

Take an arbitrary point x and find the increment Ay :

Ay =sin(x + Ax) —sin X = ZCO{X +%}sin% . Therefore,

lim Ay = Ilm0 2co{x+%)sm% = 0. Since the product of a bounded function cos x by an infinitesimal function sm7 is an infinitesimal function.

Ax—0 AX—

According to the definition (11.3), the function y =sinx is continuous at the point x.

Similarly, we prove the continuity of the function y =cosx.

11.3. Function classification.

The points of discontinuity of a function and their classification.

The points at which the continuity of the function is broken are called the break points of this function. The following classification of the break points

has a place:

I . : . : : : : . sinx . : .
The limit of the function at a point exists, but the function f(x) it self is not defined at that point. For example, y = ~ is not defined at the point x =0

- . : : . sinx . . : -
, but the limit of the function at that point exists. Ilrrz)— =1. Such a break point of the function is called the point of the eliminated gap.
X— X
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When the left and rigt limits of a function at the point x, exist, but are not equal to each other, then such a point X, is called a break point of the first

kind. "

Fig. 11.1.

That is, there is a final jump in the change in the value of the function when passing through this point.
In the case when one of the left or right limits or both limits do not exist, there is an infinit jump of the function when passing through this point, then

such a break point is called a break point of the second kind. (fig. 11.2).

y A :
i h=w
] E
0 i V X
Fig. 11.2. |

Example 11.1. Find the break points of the function and set their characters.
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et -1

f)=""-.

Solution. Since the function e¢* —1 and x are continious at any point, their ratio will also be continuous at all points x = 0. For x =0 the function inde-

X

. e . . .oet-1
terminate. Hence, it is discontinuous. Since Ilm0
X—> X

=1,x =0 is the point of the eliminated gap.

If we put f(0)=1, then the function

f(x),x=0 . )
(p(X)z{ i ) will be continuous for all xeR.
X

Example 11.2. Set the nature of the function break points

x?+1 —0<x<0
f(x)=9 Xx+L,0<x<3
6-—X,Xx>3

Solution. The functions definition area is the entire numeric axis (- «;+ «). Discontinuities of the function are possible only at the points x=0 and x =3
, Where the function changes its analytical task, its appearance. Find the oneway limits at the point x=0.

lim f(x)= lim (x*+1)=1. lim f(x)= lim (x+1) =1, f(0)=1. We have lim (x):xﬁrglof(x): f(0).

x—0-0 x—0-0 x—0+0 X—0+0 x—0-0

Therefore, at the point x =0 the function is continuous.
Iirpﬁ0 f(x)= Iiryo(x +1)=4. Iir;w+0 f(x)= Iir3n0(6— X)=3. = at the point x = 3 the function has a discontinuity of the first kind.

1
Example 11.3. Set the nature(character) of the function break points f (x) =e**.
This function is continuous everywhere except for the point x =—1. Let us find the right and left limits for the function at this point:
1 1

1
Im f(x)= lim ex!=Im e =lm ef%=e”=—=0.

X-1-0 x—>-1-0 X>-1-0 X--1-0 e”®
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1 1 1
im f(x)= lim ex'= lm e01=lm e’=e” =0,

X— -140 X— -1+0 x—>-1+0 X—>-1+0

At the point x =-1, we observe the infinity jump for the function. Hence x =-1 is the break point of the second kind ( Fig. 11.2.1).

100
80T
H | 607
_IJ f[x-:l |
o | 40t
201
1282, S
-1 =05 0 05
-09 x 1

1

Fig. 11.2.1 The graph for the function f (x) =e**.

11.4. Basic theorems about continuous functions. Continuity of elementary functions.

The continuity theorems of functions follow directly from the corresponding limit theorems.
Note thate a function is continuous on the closed segment[a, b], if it is continuous at any point of this segment.

Theorem 11.1. The sum, product, quotient of two continuous function is a continuous function (for the quotient, except for those argument values in which the

divisor is zero).
Theorem 11.2. Let the function u = ¢(x) be continuous at a point X, , and let the function y = f (u) be continuous at the point u, = @(x,) . Then, the complex

function y = f (¢(x)), consisting of continuious functions, is the continuous function at the point X, .
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Proof. By virtue of the continuity of the function u = @(x), lim p(x) = (x,) =, .
XX

That is, at X — X, we have u — u,.
Therefore due to the continuity of the function y = f (u), we have

lim f(p(x)) = lim £ (u) = f(up) = f(0(x))).

X—XQ u-g

This proves that the complex function f(p(x)) is continuous at the point X, .

Theorem 11. 3. If the function y = f(X) is continuous and strictly monotone on the replaced segment [a, b] of the axis Ox, then the inverse function

y = @(X) is also continuous and monotone on the corresponding segment [c, d] of the axis Oy.(The proof is umitted).

: sin x . : . . :
So, for example, the function tgx = cosx by virtue of theorem 11.1, is a continuous function for all values of x, except for those x for which cosx =0

, that is, except for the value of X = % +m,ne’l.

It can be proved that all basic elementary functions are continuous for all values of x for which they are defined.

As we know, an elementary function is a function, that can be defined by single formula containing a finite number of arithmetic operations and operations
for taking a function from a function (the operation of superposition for the functions) of the basic elementary functions.

Therefore, it follows from the above theorems: every elementary function is continuous at every point at which it is defined.

This important result makes it possible, in particular, to easily find the limit of elementary functions at the points where they are defined.

Example 11.4. Find the limit. Since the function is continuous at the point X, =%

lim ctg x
T T
X—— ctg =

lim2* =2 4 =2 4=2"=2

T
X
4
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11.5. Properties of functions that are continuous on a segment.

The function that is continuous on the segment have a number of important properties. Let us form them in the form of theorems without giving their
proofs.

Theorem 11. 4. (Weierstras’s Theorem). If a function is continuous on a segment, then it reaches its largest and smallest values on this segment.
Corollary. If a function is continuous on a segment, then it is bounded on that segment.

v

Fig. 11.3

Theorem 11. 5. (The Bolzano-Cauchy Theorem). If a function is continuous on a segment and takes at its ends unequal values of A and B, then on this

segment it takes all intermediate values between A and B.
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Fig. 11.4

Corollary 11.6. If the function y = f(x) is continuous on the segment [a, b] and takes values of different sign on its ends, then inside the segment

[a, b] there is at least one point C at which this function turns to zero f(C) =0, C e (a,b).(fig. 11.5).

ajic © p " X
fla) <0

Fig. 11.5

Note that theorems 11.4 and 11.5 are not true for the function that suffers a break on the segment or the segment turns into the open interval.
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§12. Derivative of the function.
12.1. Definition of the derivative, its mechanics and geometric meaning. The equation of tangent and normal to the curve.

Let the function y = f(x) be defined on some interval (a;5). We will perform the following actions:
let’s give the argument x an increment Ax: x € (a;b), x+ Ax e (a;b);

find the corresponding increment of the function Ay = f (x +Ax)— f(x);

let’s make the ratio of the increment of the function to the increment of the argument.

If this limit exists, then it is called the derivative of the function /(x) and it is denoted by one of the next symbols: f'(x), /3", ., ? .
X

The derivative of the function y = f(x) at the point x, is called the limit of the ratio of the increment of the function to the increment of the argument,

f(XO+AAXX)_ f(xo) or f’(X)ZA!(iElO f(xx):;o(XO)'

when the increment of the argument tends to zero. That is: y' = AIimO
X—>

A function y = f(x) that has a derivative at each point in the interval (a;b) is called differentiable on this interval. The operation of finding the deriva-

tive of a function is called differentiation. The value of the derivative of the function y = f(x) at the point x, is denoted by one of the symbols:

f,(xo )’ y’ X=XQ or y'(XO) '

Example 12.1. Find the derivative of the functiony =C, C =const.

f(x)=C, f(x+Ax):C:>ﬂ= Fxra) =10 _C-C_4_ jim L g
AX AX AX Ax—0 AX

Thus, C'=0.

Similarly, the derivatives of the basic elementary function could be find:

!

1. @*y=ou® ', az0; (in particular, (Jﬁ) :;G.u'; [ij :;.u’);

127



2. (@")=a" -Ina-u';

w

. (e")y=e"-u;

-u';

N

. (log u)'=
(loguy=———

5. (Inu)'=

.u';

S | =

(o2}

. (sinu)'=cosu-u';

\l

. (cosu)=—sinu-u';

1
(tgu)=———u';
cos” u

oo

(o]

. (ctgu)'=— )
S u

10. (arcsinu)'=——-u'"; (arccou)'=-—

11. (arctgu)'= ! -u';  (arcetgu)'=—
I+

12. (shu)=chu-u";

13. (chu)'=shu-u';

|

‘u.

1
14. (thu)'= -u'; (cthu)=-—
(thar) ch?u ( sh®u

12.2. Mechanics meaning for the derivative of the function.

If s(x) is interpreted as a function that describes the dependence of the distance traveled on the time date, then

128



As _s(t+At) —s(t)
At At

instantaneous speed of the movement at the given time t. Generalizing, we can say that if the function y = f(x) describes a process, then the derivative

. L . As o
is interpreted as the average speed of the movement along the path traveled in time At. Then AI!mO A =s'(t) is interpreted as the

is the speed of this process. This is the physical meaning of the derivative.

12.3. Geometric interpretation of the derivative.

On the graph of the function y = f(x), we consider two points corresponding to the values of the arguments of the function y= f(x) : xand x+ Ax.

These are the points A and B. AB - secant to the function graph. Angle S - the angle of inclination of the secant L to the axis Ox. Then

tgp = % When Ax — 0 the secant tends to occupy the position of the tangent.

[ Ax !
Xo Xo + Ax >

In the limit, the secant has one point in common with the graph of the function at the point A. That is, the secant turns into the tangent to the graph of
the function at the point x,.

Thus, the derivative of the function y = f(x) at the point x ( f’(x)) is the tangent of the angle of inclination of the tangent to the graph of the function
y = f(x) at the point with coordinates (X, f(x)).

That is, the derivative of a function at a point x equals to the angular coefficient of the tangent to the graph of the function at a point k.., whose abscissa

is . This is the geometric meaning of the derivative.
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12.4. The equation of the tangent and normal lines to the curve.

If the point M has coordinates M (xo, yo), then the angular coefficient of the tangent is k = f’(xo). Using the equation of a straight line passing through

a given point x,
(y-Y,=k(x—x,)), we can write the equation of the tangent: y—y, = f'(X,)(X—X,).

A straight line perpendicular to the tangent at the point of contact is called a normal line for the curve.

y
A
y=[(x)
*7 > X
Since the normal is perpendicular to the tangent, its angular coefficient k= =— kl =— f,(l 5 Therefore, the normal equation has the form
tang XO
Y= Yo =~ (X =) if (k)% 0).
(%)

12.5. Relationship between continuity and differentiability of a function.

Theorem 12. 1. If a function is differentiable at a point, then it is continuous at that point.
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Proof. Let the function f (x) be differentiable at some point x. Hence there is AIimo% = f'(x). Accoding to Theorem 17.5 on the relation of a function, its

limit, and an infinitesimal function, we have A_y: f'(x)+a, where o —0 at Ax—0, that is Ay = f'(X)AX+ a - AX. Passing to the limit at Ax —0,

we get AIim0 Ay =0 and this means that the function y = f (x) is continuous at the point x.
X—>

The inverse theorem is incorrect: a continuous function may not have a derivative. For example a function y = |x| .

X, x>0
y:|x|: - X, Xx<0.

y

A

y =[x

v

The function under consideration is continuous at the point x =0, but it is not differentiable at this point.
Really, at the point x =0 we have

Ay fO+Ax)—f(0) [0+AX-[0] [AX |1 Ax=0
AX AX A& A |- Ax<O
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That is, AIlmoA—y does not exist and the function y =|x| doesn’t have a derivative at this point x =0, a graph of function doesn’t have a tangent at this
X—> X

point.

Comments:1. There are one-way limits for the function y =|x| at the point x =0

AIirr(}_o% =-1, AIirg 0% =1. In such case, the function is said to have one-side derivatives and we denote itby f'(x)and f/(x).If f'(x) = f/(X), then

a derivative doesn't exist at the point x. There is no derivative at the point of discontinuity of the function.
2. The derivative of a continuous function itself is not nessarily a non-continuous function. If a functiony = f(x) has a continuous derivative y' = f'(x)
in some interval (a;5) then the function is called smooth.

12.6. The derivative of the sum, difference, product, quotient of two function.

Finding derivatives directly by definition in practice is associated with certain difficulties. Therefore, the following rules are used, which simplify the
task of finding derivatives. Let u=u(x) and v=V(x) be two differentiable function in a certain interval (a;b).
Theorem 12.2. The derivative of the sum(difference) for two functions is equal to the sum(difference) of the derivatives of these functions (u£v)'=u'tv'.

Proof. Denoty by y =u+v. By the definition of the derivative and the main theorems about the limits, we obtain:

Y = lim (u(x+Ax) V(X + AX) — (u(x) iv(x)) — —im (u(x +AX) —u(x) . V(X + AX) —V(X)
AX Ax—0 AX AX

. AU . Av
j:hm—illm—:u’iv’.
Ax—0 AX  Ax—0 AX

Ax—0
That is: (U£V)'=u'tV',
The theorem holds for any number terms.

Theorem 12.3. The derivative of the product of two functions is equal to the product of the derivative of the first factor by the second factor, plus the product

of the first factor by the derivative of the second factor. (u-v)'=u'v+v'u

Proof. Let y=u-Vv. Then
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Y = lim Ay _ im (u(x + AX) - V(X + AX) —u(x) -v(x)) _
A0 AX  Ax—>0 AX

_jim ([u(x + AX) - V(X + AX) — (U(X) - V(X + AX) ]+ [u(x) - V(X + AX) —u(x) - v(x)]) _
AX

i YO AX) - X+ AX) —u(x) u(x)[V(x + Ax) —v(x)]
AX—0 AX Ax—0 AX

—im A9y Ax) + fim u() Y = tim Y fim v(x+ Ax) + lim u(x)- lim 2Y =
Ax—0 AX AX—0 AX M50 AX Ax—0 Ax—0 Ax—0 AX

=u'(X)v(x) +u(x)v'(x). Thatis: (U-v)'=u'v+v'u.

It can be shown that

(Cu)'=Cu', C=const

U-v-@)=uu+Vuo+uae .

Theorem 12.4. The derivative of the quotient of two functions u(x) and v(x) (v(x) = 0) is a fraction where the numerator is the derivative of the numerator
of the original fraction multiplied by the denumerator for the original fraction minus the derivative of the denominator of the original fraction multi-

plied by the numerator of the original fraction. The denominator of the nesulting fraction is the square of the denominator for the original fraction.

(Ej _ u'v—zuv'1 (v0).
v

Y

u
Proof. Let y=—. Then
Vv

u(x+Ax) u(x) u(x+Ax) —u(x) +u(x) u(x)
y' = lim ﬂ: lim V(X+AX)  v(x) _ lim V(X+AX) —V(X) +V(X)  Vv(X) _
AX—>0 AX  Ax—0 AX AX—0 AX
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u(x) +Au u(x)
lim v(X)+Av  v(x) im u(X)V(x) +Au - v(x) —u(x)v(x) + Av-u(x) _
AX—0 AX M0 AX(V(X) + AV) - v(X) -

A v -2 (o
_ lim Au-v(x) - Av-u(x) _ lim -AX AX _
-0 AX(V(X) + AV) -v(X) -0 vZ(X) + AV - V(X)

v lim Au u lim Av
Ax—0 AX Ax—0 AX . VUI—UV'

vi+vilimv v?
Ax—0
!
. (u vu'-uv'
Thatis | — | = ———.
Vv v

! !
!

Investigation 12.1. (%) :C(l) = C{l VoV '1} =C (_\2/) = —C\\ll—z, C=const.

Vv V2 Vv

12.7. The derivative of a composition functions.

Let y= f(u) and u=¢g(x), than y = f(¢(x)) is a complex function with an intermediate argument u and an independent argument x.
Theorem 12.5.(chain rule) If the function u = ¢(x) has a derivative u;, at the point x, and the function y = f (u) has a derivative at the corresponding point

u =@(x), then the composed function y = f (¢(x)) has a derivative Y at the point x, which is found by the formula y; =y, -u;,.

Proof. By condition AIimoi—)lj =y, < Ay=y,-Au+oAu (12.6)

where ¢ >0 at Au—0.

. . . . A
The function u = ¢(x) has a derivative at the point x: AIlmo—Au =U, < Au=u, -AX+ fAX, where f—0 at Ax —>0.
X—> X
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Substituting the values of Au into equality (12.6), we get
Ay =Y. (U AX + BAX) + a (U, AX + SAX) . That is
Ay = YU, AX + Y. BAX + U, aAX + PoAX .

%:y&u;+ygﬂ+u;a+ﬂa,then at Ax—0.

yx = yuux ( yuﬂA;)OO' UxaAX—_,)OO’ aﬁAxi))OO)-

Thus, to find the derivative of a complex function y = f(u) = f(¢(X)), the derivative of this function with the intermediate argument u must be multi-
plied by the derivative of intermediate function u with the independent argument x. y, =V, -u, .
This rule remaind in effect if there are several intermediate arguments.

If y="f(u), u=e(v), v=9(x), then

Y= Yo-UVe= 1909,

Let y= f(x) and x=¢(y) be mutually inverse functions.

Theorem 12.6. If the function y = f (X) is strictly monotone on the interval (a;») and has an unequal zero derivative at any point of this interval, then the

inverse function X =¢(Yy) also has a derivative at the corresponding point of the same interval, defined by the equality @, = % or x| = S

. Ve
Consider the inverse function x = ¢(y).

A 1 .
A_§ = Ay if Ay —0.If Ay — 0 then by virtue of the continuity of the inverse function Ax — 0. And since AIlmo% = f'(x) #0, then from (12.7)

Ax

follows the equality
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AX 1 1 . - . . . . .
lim —= = =¢'(y). Thatis ¢/ = L . Thus, the derivative of the inverse function is equal to the inverse of the derivative of the given func-
! ¢y !
Ay—0 Ay Ilm Ay f (X) fX
Ax—0 AX
tion.

Example 12.3. Find the derivative of the function:

y =log,’tgx* = (Iogztg x“)3 =u®

u=log,z, z=tgq, q=x*, y, =V, U, -z, -9,

!

(tox*), =

v =3log.tgx'} foa.tgx'). =g’} 5 L
1 1 1 ' 1 1 4%

1 1
: : x*) = =3log%tgx* - —- :
In2 tgx* coszx“( ) 929X 2 tgx* cos®x*

: 4x3,
In2-tgx* cos*x*

= 3(Iogztg x“)2 : = 3log®tg x* -

12.8. Table of derivatives.

The rules of differentiation, formulas of derivatives of basic elememtary functions are written in the form of a table.
Rules of differentiation.
1. (uxv)'=u+tV

2. (u-v)'=u'v+Vv'u,(Cu)'=Cu" if C=const.

3 (Hj _ vu—zuv | (9) :_Clz
v v v v

4.y, =y, -u,, if y="f(u) and u=p(x)

5. %, ==yl =L if y="f(x) and x=p(y).
ARG

Differentiation formulas.
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C'=0; if C=const
*)=au®"-u', a=0;, in particular (\/E) =—— [_j =y
Wi

(@")=a"-Ina-u'; in particular (e")'=e" -u;

(log,u)'= ! -u'; In particular (Inu)'=—-u'";
Ina

u .

NI

(sinu)'=cosu-u';

(cosu)'=—sinu-u';

1 .
(tgu): 2 U
cos u

(ctgu)'=———
Sm-u

(arcsinu)'=

(arctgu)'= 1
1+

arcctgu)'=—
(arcctgy) 1+u?

(shu)=chu-u';
(chu)=shu-u';
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1
thu)'=——-u";
(thu) ch’u

cthu)'=— u'.
(cthu) sh?u

Example 12.10. Find the derivative of the function:
y=x*-3x*+2x-1. Since x' =1, we have
y=(x* =33 +2x-1)' = (x") = (3x*) + (2x)' =1 =4x> - X' = 3(x*) + 2X' -0 =

=4x3 9% X' +2=4x>—9x* + 2.

3
Example 12.11. yzzi.
tg X

g (2] o X)) 0y tex-xtgn

tg x tg X (tgx)?
3
I Xtgx—x>-———x 3x’tgx - X2
_9 cos’X  _o cos’x
tg® x tg® x

Example 12.12. y = cos(In** 2x) .

y' =sin(In** 2x)-12. |n112x.2i.2.
X

y=cosu,u=Vv? v=Int,t=2x.Thatis: y, =y, -ul-v/ -t .
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§13. Differentiation of implicit and parametric functions.
13.1. An implicity defined function.

If the function is given by the equation y = f (x), resolved with respect to y, then the function is given explicity.

The implicit assignment of a function is understood as the assignment of a function in the form of the equation F(X; y) =0, which is not resolved with
respectto y.

Any explicity given function y = f(x) can be written as implicity given finction by the equation f(X)—Yy=0. The converse statement is not true. It is
not always easy, and sometimes impossible, to solve the equation with respecttoy (y +2x+c0osy—1=0 or 2 —x+y=0).

For example, if an implicity function is given by the equation F(X; y) =0, then to find the derivative of y with respect to x, it is not necessary to
solve the equation with respect to y . It is sufficient to differentiate the equation with respect to x considering y as function of x.

Then the resulting equation is resolved with respect to y'.

As a result, the derivative of the implicit function is expressed in terms of the argument x and the function y .
Example 13.1. Find the derivative of the function y, given implicity by the equation x* +y*—3xy =0.

(¢ +y*=3xy) =0

3x* +3y’y' = 3(X'y + xy') =0

32 +3y?y —-3(y+xy)=0 x*+y’y—y—xy'=0

X —y=y(x-y?)

’ X2_

y=2"Y.
X—y
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13.2. A function defined parametrically.

Let the relationship between the argument x and the function y be given parametrically in the form of two equations

X = X(t)
13.1
{y =y(t) (131

where t is anxiliary variable called the parameter.

y = f,(x)- f,(x)- f;(X). We prolog this equality using the properties of the logarithm.
Iny=Inf(x)+In f,(x)+In f;(x).

Let us take the derivative of the total part of the obtained equality.

Ey' —f (x)+ L f, (x)+ f5 (x)

y~ f() f(x) f()

Let us solve this equation with respect to y;,.

Or y = f(x)?™. To find the derivation of a function y. we prolog this equality using the properties of the logarithm.
Iny=1Inf(x)?® =p(x)In f(x).

Let us take the derivative of the total part of the obtained equality.

(ny) =[e(x)in £ (9]

Ly = 0N F () + p(X) - £(%).
y ()

Let us solve this equation with respect to ;.

= {go’(x) In f(x)+M] f(x)7™).
f (%)
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Find the derivative of y,, assuming that the function x(t) and y(t) have derivatives and the function x(t) has x'(t) # 0 on the entire domain of defini-

tion. Than
dy
, dy dy dt dy 1 gty .,
_dy_dy at oy 1 _dt_Ye_. 13.2
T T A dx dr dx dx ) (132)
dt dt

The resulting formula allows us to find y; from a function given parametrically, without finding a direct dependence of y on x.

43
Example 13.1. Let {X _:2 .Find vy, .
y:
: o2 oy , 2t 2
Solution. We have x; =3t°,y; =2t . Therefore (13.2) Yy, 33
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§14. Logarithmic differentiation.

In the case when a function is given as a product of several functions or as a function in the degree of a function, it is advisable to first prolog it to find

the derivative of a function .
Example 14.1. Find v, , if

y- (x> +2)4/(x-1)° -&"

(x+5)°

3
Iny =In(x+2)+In(x+1)* +Ine* —In(x+5)° or

(Iny) =(In(x +2) +%In(x +1) + x—3In(x +5)j'

1, 1 3 1 1

_y: +—- +1-3-———

y X+2 4 x+1 X+5

Than y' = 1 +§‘ 1 +1- 3 -y or
X+2 4 x+1 X+5

, { 1 .3 1 ., 3 ](x2+2)4,/(x_1)3.eX_

V= x+2+z'x+1 X+5 (x+5)°
Example 14.2. Find Y., if y = (sin2x)*"*.
Iny=(x*+1)Insin2x.

(Iny) = [(x2 +1)Insin 2x]'

L y. = (X* +1)Insin 2x + (x* +1)(In sin 2x)’
y
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COS2X-2

ly;=ZXMSm2x+u2+D.
y sSin 2x

y,=[2xInsin2x +2(x* + g 2x|- (sin2x)***.
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§15. Higher-order derivatives.

The derivative y' = f'(x) of a function y = f(x) is also a function of x and it is called a first-order derivative.

If the function f'(X) is differentiable, then its derivative is called the derivative of the second-order derivative and is denoted by y” (or f"(x),

d? y d(dy) dy
So, y' =
v dx( dx) ). So, y'=(y)'.

3
The derivative of the second-order derivative, if it exists, is called the third-order derivative and is denoted by y" (or f"(X), d y cclj [‘;ij dy’ ).

SO, ym — (y”)l .
The derivative of the n-th order is called the derivative of the (n—1) -th order.

(ﬂ) (y(n l))
Derivatives above the first order are called higher order derivatives.

Example 15.1. Find the derivative of the 13-th order of the function y =sinx.

y' =(sinX)’ =cosx = Sin[x+%j
y" = (cosx)' =—sinx :sin()H_%,zj
ym = (—sin X)' =—_COSX = sin(x+%,3j

y® = sin(x + % .13] .
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15.1. Higher-order derivatives of implicitly defined functions.

Let the function y = f(x) be given implicitly as an equation F(X;y)=0. Differetiating this equation with respect to x and solving the resulting equa-
tion with respect to y’, we find the first-order derivative.

Differentiating the first derivative by x, we get the second derivative of the implicit function. It will include x, y, and y’. Substituting the already
found value of Yy’ in the expression of the second derivative, we express y” in terms of x and y. We do the same for finding the third-order deriva-

tive, and so on.

Example 15.2. Find y”, if x* +y* =1.

Decision. We differentiate the equation by x.

We obtain 2x+2yy' =0. Futher, X=—yy', y'=—~
y

X
’ ' ' ' X——1-Y
y”:(_ﬁJ =_(xy—ny=xy—y= ( yj e
y yz yz yz y3
2 2
2%:;—3 (since x* +y* =1).
" _1 -3
=F=—
Y =1y oy = Z%(__Xj: =,
y yly y
Thus, y"’:_y—:ix.
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15.2. Higher-order derivatives of functions defined parametrically.

Let the function y = f(x) given parametrically. As you know, the first derivative of y’ is found by the formula y, = RS

We find the second derivative y” of the function given parametrically.

dy,)

dy,(®) _dy,) dt g _ (i)

dx dt  dx(t) dx X
dt

Ve =(Y) =

Thus, y;'=M Similary, y=(y—)t

f .

Example 15.3. Find the second derivative of a function given parametrically
X =cost
y=sint

, _l{_ (sint)’ _ cost

= = =—ctgt
Vo X, (cost) —sint J
1
yn — (yt’); — (_Ctgt); — Sinzt — 1 — y"_
X —sint  —sint sin’t  °*
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§16. The differential of the function.

16.1. The concept of the differential of a function.

Let the function y = f (x) have a nonzero derivative at the point x . AIlmoA—y = f'(x) # 0. Then, by the connection theorem of a function, its limit and
X—> X

an infinitesimal function, we can write

%= f'(X)+a,where ¢ -0 to Ax—0, 0or Ay = f'(X)AX+a - AX,
Thus, the increment of the function Ay is the sum of two terms f’(X)Ax and « - Ax, which are infinitesimal at Ax - 0.

. . . . . . . . f'(X)AX
In this case, the first term is an infinitesimal function of the same order of smallness with Ax, since AllmO(A—) =f'(x)=0.
X—> X

The second terms is an infinitesimal function of a higher order than Ax:

. aAX ..
im —=1lim ¢ =0.
Ax—0 AX Ax—0

Therefore, the first term is called the main part of the increment of the function Ay .
The differential of a function y = f(X) at the point x is the main part of its increment, equal to the product of the derivative of the function by the
increment of the argument, and is denoted by dy ( or df (X))
dy = f'(x)Ax (16.1)
The differential dy is also called a first-order differential.
Find the differential of the independent variable x, that is, the differential of the function y=Xx. Since y'=Xx'=1, then, according to formula (16.1),

we have dx=X'Ax=Ax.
That is, the differential of the independent variable is equal to the increment of this variable. Therefore, the formula (16.1) can be written as:
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dy = f'(x)dx. (16.2)

In other words, the differential of a function is equal to the product of the derivative of that function by the differential of the independent varable.
From formula (16.2) follows the equality % = f'(x).

Now the notation of the derivative of the function can be considered as the ratio of the differentials dy and dx.
Example 16.1. Find the differential of the function f(x)=3x*—sin(1+ 2x).

df (x) = f'(x)dx = [3x2 —sin(L+ 2x)],dx =[6x —2cos@+2x)Jdx .

Example 16.2. Find the differential of the function:

y=InL+e®)+Vx+1.

2X

1
10 24%x% +1

1+e

e .10+ dx .

X

dy = yldx = [In(1+ ') +/x? +1]’dx = {

10e™ X
Thus, dy = L+ e VX2 +de.

16.3. Basic theorems about differentials.

The main theorems about differentials are easily obtained by using the relation of the differential and the derivative of the function(dy = f'(x)dx).
The corresponding derivative theorems are also used. For example, since the derivative of the function y =c is zero, the differential of the constant is
zero.

dy=c'(x)dx=0-dx=0.

Theorem 16.1. The differential of the sum, difference, product and quotient of two differentable functions is defined by the following formulas:

d(uxv)=du=xdv
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d(uv) =udv+vdu

d(gj:vdu——zudv (v=0).
Vv v
We prove, for example, the second formula

d(uv) = (uv)'dx = (u'v+uv’)dx =vu'dx + uv'dx = vdu+udv = udv + vdu.

Theorem 16.2. The differential of a complex function is equal to the product of the derivative of this function with respect to the intermediate argument and
the differential of this intermediate argument.

Let y= f(u) and u=¢(x) be two differentiable functions forming a complex function. By the theorem on the derivative of a complex function, we have
Y=Y Us.

Multiply both parts of this equality by dx

y,dx =y, -u,dx. Weget dy = f du.

Comparing formulas dy = y;dx and dy = y.du, we see that the first differential of a function is determined by the same formula, regardless of whether its

argument is an independent variable or a function of another argument. This property of the differential is called the invariance (immutability) for the form of
the first differential.

Formulas dy = y,dx and dy = y,du are identical in appearance. But there is a fundamental difference between them. In the first formula x is an independent

variable. Hence dx = Ax. In the second formula v is a function of x . Therefore, generally speaking, du = Au . Using the definition of the differential and
the basic theorems about differentials, it is easy to transform the table of derivatives into a table of differentials. For example,
d(cosu) = (cosu)’-du=-sinudu.

16.4. Table of differentials.

1. d(utv)=dutdv

2. d(uv) =udv+vdu, in particular, d(cu)=cdu
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3. d(gj:vdu——zudv (v 0), in particular, d(E):—@
v v v

4. dy =y dx, if y=f(x)

(62}

.dy=y.du,if y=f(u) and u=¢(x)

(o3}

.dc=0

. dUu*)=a-u*du

o

.d(@")=a"lna-du, in particular, d(e") =¢" - du.
9. d(log,u) :idu , in particular, d(Inu) =¢" -du
ulna

10. d(sinu) = cosudu

11. d(cosu) = —sinudu

12. d(tgu) = du

1
cos’ u

13. d(ctg)=— du

sin®u

du

d(arcsinu) =
14. 1-u?

d(arccou) =— du

15. 1_u2
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du

d(arctgu) =
16. (arctgu) 1+u?

1
d tou) = — d
17. (arcctou) e

d(shu) =chudu
18.

19. d(chu) =shudu
1

20. d(thu) = du
(thu) ch’u
21, d(cthu) = ——— du
' sh’u
16.5. Applying the differential to approximate calculations.
It is known that f'(x) :Alimo%. Therefore, Ay = f'(x)Ax or f(x+Ax)— f(x)= f'(X)Ax,
f(Xx+Ax) = f(x)+ f'(X)Ax (16.3)

Formula (16.3) is used to calculate the approximate values of a function f(X) at a subsequent point x+ Ax, knowing the value of the function itself

and its derivative at the previous point x .
The accuracy of the formula (16.3) increases with decreasing AX .

Example 16.3. Calculate approximately arctgl,05.
Consider the function f(x) =arctgx. By the formula (16.3),
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arctg(x + Ax) ~ arctgx + (arctgx)'Ax. That is

arctg(x + Ax) ~ arctgx + ! > AX.
1+x

Since 1,05=1+0,5, then x =1, Ax=0,5 we get arctgl,05=arctgl+ 100152 = % + 0,025~ 0,810.
+

It can be shown that the absolute error of formula (16.3) does not exceed the value of M - (Ax)*, where M — is the largest value of f”(x)| on the

segment [x, x + Ax]. (See 17.2).

Example 16.4.
What path will the body take in free fall on the moon in 10,04 ¢ from the start of the fall. The equation of free fall of a body

_9m-t?

H . 9m=16m/c>.

Solution. You need to find H(10,04). Let us use the approximate formula (AH ~ dH )
H(t+At) ~ H(t) + H'(t)At.
At t=10c, At =dt =0,04c H'(t) =9m-t we find

H (10,04) = +1,6-10-0,04 =80+ 0,64 = 80,64 (m).

1,6-100
2

A task for an independent solution.
A body of mass m=20 kg moves at a speed of v=10,02 m/c . Calculate approximately the kinetic energy of the body

2

(Ek _ mTV E, (10,02) ~ 1004(Dg)] .
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16.6. Differentials of higher orders.

Let y= f(Xx) be a differentiable function, and its argument x is an independent variable.
Then its first differential dy = f'(x)dx is function of x , one cane find the differential of this function. The differential from the differential of function
y = f(X) is called the second differential or the second-order differential and is denoted d®y or d*f (x).

So, by definition d?y = d(dy) . Find the expression of the second differential of the function y = f (x) . Since dx=Ax and it does not depend on x, then
when differentiating, we consider dx to be constant:

d?y =d(dy) = d(f'(x)dx) = (f'(x)dx)’dx = f"(x)dxdx = f"(x)(dx)* = f"(x)dx*. ((dx)* = dx).
Similarly, the third-order differential is determined and found. In general, a n-order differential is a (n-1) order differential
d"y=d(d"ty) = f M (x)(dx)" = f ™ (x)dx". Hence we find that

dy d’y d3y
f ' = .I: " — ' f " ——7
(X) ™ (X) Ve (X) o

(16.4)

That is, the derivative of a function can be considered as the ratio of its differential of the corresponding order to the corresponding degree of the differen-
tial of an independent variable.

Note that all the about formulas are valid only if x is an independent variable.

If (16.4) y = f(x), where x is a function of some other independent variable, then the differential of the second and higher order not have the invariance
property and is calculated using other formulas. Let’s show this by the example of a second-order differential.

Using the product differentiation formula d(u - v) = udv + vdu, we obtain

d?y =d(f'(x)dx) =d (f'(x))dx+ f'(x)d(dx) = f"(x)dxdx + f'(x)d*x <

o d?y = f(x)dx* + f'(x)d’x. (16.5)

Comparing formulas (16.4) and (16.5), we make sure that the case of a complex function, the formula of the second-order differential changes: the second
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term appears f'(X)d’x. Itis clear that if x is an independent variable, then

d*x=d(dx) =d(l-dx) =dx-d1l=dx-0=0 and formula (16.5) go as (16.4).

Example 16.5. Find d’y, if y =e* and x is an independent variable.

Solution. y'=3e¥, y" =9e¥* = d’y = f"(X)dx* < d*y = 9e¥dx’*.

Example 16.6. Find d*y, if y=x* and x =t*+1 and t is an independent variable.

We have: y' =2x, y" =2, dx = 3t°dt, d°x = 6tdt?, than
d?y = 2dx* + 2x6tdt® = 2(3t?dt)? + 2(t° + 1)6tdt® =18t*dt® + 12t*dt? + 12tdt* =
= (30t* +12t)dt>.

Other solution: y = x*, x =t>+1. Therefore, y = (t* +1)°. Further,

d?y = y"dt® = (30t* +12t)dt’ .
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§17. The study of functions using derivatives.
17.1. Some theorems on differentable functions.

Let us consider a number of theorems of great theoretical and applied importance.
Theorem 17.1. (The Roll’s Theorem).
If the function f(X) is continuous on the segment [a, b], differentiable on the interval (a, b) and the ends of the segment take the same values, then
there will be at least on point ¢ € (a, b) at which the derivative turn to zero, thatis f'(c)=0.
Theorem 17.2. (Cauchy’s Theorem).

If the functions f(x) and ¢(X) are continuous on the segment [a, b], differentiable on the interval (a, b) and @(x) =0 VX e (a, b), then there is at

least one point ¢ € (a, b) that the equality holds

f(b)-f(a) _ f'(c)
p(b)-p(a) ¢'c)

Theorem 17.3. (Lagrange’s Theorem).

If the function f(x) is continuous on the segment [a, b], differentiable on the interval (a, b), then there is at least one point ¢ € (a, b) such that the next
equality holds: f(b)— f(a)= f'(c)(b—a).
This formula is called the Lagrange formula or the formula of finite increments: the increment of the differentiable function on the segment [a, b] is equal
to the increment of the argument multiplied by the value of the derivative of the function at some inner point of this segment.
Corollary 1. If the derivative of a function iz zero on a certain interval, then the function is constant on this interval.
Corollary 2. If two function have equal derivatives on a certain interval, then they differ from each other by a constant term.
17.2. The Lopitale rule.

Let’s consider a method of disclosing uncertainties of the form 0 and ﬁ, which is based on the use of derivatives.
00]
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. : L 0
Theorem 17.4.(Lopital s rule of disclosure of uncertainties of the form 0 ).

Let the functions f(x) and @(X) be continuous and differentiable in the neighborhood of the point x, and f(x,) =@(x,) =0. Ifthereisa

iim )1 then tim T jim T00 .
X=X0 @ (X) X—>XQ ¢(x) X=X0 @ (X)
Example. 17.1. Find lim X=1 _ 191 jim (=D _ fim——t = fim—— =1
x—1 Xlnx 0 x—1 (X|n X)’ x—1 Inx+x1 x-10+1 1
X

. 1-cos6x |0| , (d—cosbx) . 6sin6x |0| . 6-6cosx ..
Iim———= 0 =I|rr3J =lim = =I|m—=llmogcosx=9.

x>0 2x° (2x%) x>0 4x 0

x—0

0
Theorem 17.5.(Lopital’s rule of disclosure of uncertainties of the form 2).
o0

Let the functions f(Xx) and ¢@(x) be continuous and differentiable in the neighborhood of the point X, and lim f(x) = lim ¢(x) =0, @'(x) #0. If there
X—XQ X—XQ

() £(X) £/(%)
| =1, then li =lim
PR T 0 T g0

Example.17.2. Find the limit.

1
' 3 2
o fg3x =[f}= iim (198%) _ o co?3x © _ 3 05X 3. 1+coslOx

P ! T 1 P 2 I3 T -
Xt (tg5x) oy - .5 SHEcos 3X 5HE 1+ cos6x
COS“5x

0| 3, -10sin10x 3 10, sinl0x |0 . 10coslOx 5,. coslOox 5
== |==lm———==-"—1|im — = = |lim —— I ==

0 SH% —6SIn6X 5 GH% SN 6X

o0

0

. 6C0s6X 3H% cos6x 3

(coleT” =Ccosbr =-1; cos%r =C0S37 =COST = —1) )
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Another way.

x— 2 =t
X_%thX 0 X=—+t

tg 3(” + t] tg(gﬂ + 3t) tg{” + 3tj
_lim——2 Jjim—2 J_fim—2 /-

t—0 T _tao 572' _t»O T N
tgh5 —+t tg| — + 5t tg| — + 5t
| (2 ) g( 2 j g(z j

(we take into account the frequency of the function)

1
7_5
_ fim ZCW93X _ iy 195X :H _lim cos’5t ~ _5
t>0 —ctghx  t=0 tg3X 0 t>0 1 3 3
cos’ 3t

17.3. Disclosure of various types of indeterminate form.

The Lopital’s rule is used to dislose the indeterminate form of type 0 and f, wich are called the main ones. The indeterminate form of type
e 0]

o0 — 00,17, 00, 0° are reduced to two main types by identical transformations.

1. Let lim f(x)=0 and lim ¢(x)=oo. Then the following equivalent transformations are obvious:
X—=>X0

X—=>XQ

fim £ (p(x) = 0-0) = im 19 = H for tim 200 E} N

o(X) f(x)
Example.17.3.
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sin® =~
Iirrltg%(Z—x):[oo-O]:lim 22X :H:nm‘—lzlim 4._4
X—> T

X—2 - 1

xazctgﬁ 0 ﬂxg X—>2 Z
4 sin2™ 4 4
2. Let lim f(x)=oc and lim ¢(x)=o0. Then you can do this
X—>X0 X—XQ
11
. B T 1oy 1 1 1 . e(x) f(x)_|0
B (£ 09~ = o —e]= i 33— |= jim #0001}
f(x) o) f(x) o(x)
Example.17.4.
1 1
(1 1 . Xx=1-Ihx [0O] . X 0
lim| — - —— |=[0—o0]=lim=————=| = |=lim—X—=| = |=
il Inx x-1 x>1Inx-(x—-1) 0 x»lX—1+InX 0
X
1
o x2 1
!
X X

3.Let lim f(x)=1, lim ¢(x)=0 or lim f(x)=o0, lim ¢(x)=0,0r lim f(x)=0, lim ¢(x) =0. To find the limit of the form f (x)**, it is con-
X—>XQ X—=>XQ X—=>X0 X—XQ X—>X0 X—XQ
venient to first prolog the expression

A= f(x)7®.
1
W2

Example. 17.5. Find Iirrg)(cost)X .

We have the ucertainty of the form [ °°]. Prologarithm the expression
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1
2

1
A=(cos2x)*, In A= Fln Cos2x. Then

—2sin2x
fim In A= lim MC02X _ | 01 _ jjny cos2x_ _ oy 192X _ 5
x—0 x—0 X 0 x—0 2X x=0 2X

1
That is In IirrgJ A=-2. Therefore, Iin}) A=e? and Iirrg)(cost)XZ =e?,

X—> X—> X—
The solution can be made shorter if you use the basic logarithmic identity f¢ =e™"" .

1

1
lim In(cos2x) x?

Then lim (cos2x)** = ex~9 =e?.
x—0

1 tg X
Example.17.6. Find Iim[—j =[oo°].

x—=0\ X

Solution.

1 1
™ ] 1 " x e
lim| = =loo” [=exp| imtgx-In=|=exp| im —2 |=exp| Im ————< |=
xao(xj p(xeo g Xj P x—0 Ctgx P x—0 1

. 2
= exp{lim x(wj ] =e" =¢e’=1.
x—0 X

17.3. Increasing and decreasing functions.
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One of the applications of the derivative is its application to the study of functions and the construction of a function graph.
We list the necessary and sufficient conditions for the increase and decrease of the function.

Theorem 17.6. (necessary conditions). If the function differentiable on the interval (a; b) increases (decreases), then f'(x)>0 ( f'(x) <0) for
VvV xe(a;b).

Theorem 17.7. (sufficient conditions). If the function differentiable by (a; b) and f'(x) >0 ( f'(x) <0) forall x € (a; b), then this function increases
(decreases) by the interval (a; b).

Example.17.7. Investigate the function for increasing and decreasing: f(x) =x*-3x—4.

The function is defined on the entire numeric axis.

f'(x)=3x* —3x=3x(x-1)>0.

Therefore(consequently), this function increases at intervals (-, 0) U (1, ) and decreases at interval (0, 1).

17.4. Maximum and minimum functions.
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The point X, is called the maximum point of the function y = f (x), if there is such & - neighborhood of the point X,, that for all x # X, from this
neighborhood the inequality f(x) < f(x,) holds. The minimum point of the function is determined similary: X, - the minimum point of the function, if

A5 X1 0<[x—Xo| <= F(X) > f(X,).

Fig. 17.2.

On fig.52.2 x_ is the minimum point, X, is the maximum point. The value of the function at the maximum(minimum) point is called the maximum

and the minimum of the function. The maximum(minimum) of the function is called the extremum of the function.

Consider the conditions for the existence of an extremum of the function.

Theorem 17.8. (necessary extremum conditions). If a differentiable function f (x) has an extremum at a point X, , then its derivative at this point is
equal to zero: f'(x,)=0.

Let, for definiteness, X, be the maximum point. This means that the inequality f(x,) > f (X, + AX) holds in the vicinity of the point X, .
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Ay

But then if Ax>0,and &>0,if AXx<0.

Ay _ f(x0+Ax)—f(x0)<O
X AX ’

By the hypothesis of the theorem the derivative f'(X,) = lim P06 +A%) = T1(%) exists.

AX—0 AX

Passing to the limit when Ax — 0, we get f'(x)>0,if Ax<0 and f'(x,) <0, if Ax>0.
That's why f'(x,)=0.

The assertion of the theorem is proved similarly if X, is the minimum point of the function.

y=f(x)

¥
o]

v

x

Fig. 17.3.

Geomrtrically, the equality f'(x,) =0 means, that at the extremum point of a differentiable function, the tangent to its graph is parollel to the Ox axis.
Note, that the converse theorem is not true. If f'(x,) =0, then this does not mean that X, is an extremum point.

Example. 17.8. For a function y = x° its derivative y'=3x> is zero at the point X, =0, but the point X, =0 is not a point extremum.

There are functions that do not have a derivative at the extremum points.
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Example. 17.9. The continuous finction y:|x| at the point x, =0, does not have a derivative, but the point x, =0 is the minimum point of the

function(fig. 17.4).

y =X

v

Fig.17.4.

Thus, a continuous function can have an extremum only at points where the derivative of the function is equal to zero or does not exist. Such points
are called critical.

Theorem 17.9. (sufficient extremum conditions). If a continuous function y = f (X) is differentiable in some & - neighborhood of the critical point X,
and when passing through it(from left to right) the derivative changes sign from plus to minus, then X, is a maximum point; from minus to plus — mini-
mum point.

Consider the & - neighborhood of the point X,. Let the condition f'(x) >0 Vxe(x,—0,X,) and f'(x) <0 VX e (Xy,X, +J). Then the function

f (x) increases on the interval (X, —0,X,) and on the interval (X,,X, +J) it decreases. It follows, that the value f (x) at the point X, is the largest on the

interval (X, —9,%,+0),thatisall X e (X, —9,%,) U (X, % +J) F(X)< f(X,). This means that the point X, is the maximum point of the function.

A graphical interpretation of the proof of the theorem is shown in fig.17.5
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f'(x)>0

Xo— 0 Xo Xo+6 x Xo—6  Xp x0+5'x

Fig. 17.5.
Similarly, the theorem is proved for the case when f'(x) <0 Vxe(x,—0J,%,) and f'(x)>0 Vxe (X, X, + ). To investigate a function for an extre-

mum means to find all its extremes.
Theorems 17.8 and 17.9 imply the following rule for examinig a function for an extremum:
1) find the critical points of the function;
2) choose from them those that are interval points of the domain of definition of the function;
3) inverstigate the sign of the derivative f’'(x) to the left and right of each of the shosen critical points;
4) in accordance with Theorem 17.9(sufficient conditions for an extremum), write down the extremum points (if they are) and calculate the values of the

function in them.

2
Example. 17.10. Find the extremum of a finction y = g —x3.

. . . 1 2 13%x-2
Solution. It is easy to check that D(y)=R . We find y'==— == )
y 2 V=3 3 3 Ux

The derivative does not exist for X, =0, and it is equal to zero for X, =8. These points divide the entire domain of this finction into 3 intervals. We

note in the figure the signs of the derivative of the function on each of the intervals of the partition. Therefore, X, =0 is the maximum point,

Yoax = Y(0) =0 and X, =8 is the minimum point. vy,.,, = Y(8) = %
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Sometimes it is convenient to use another sufficient criterion for the existence of an extremum, based on determining the sign of the second

drrivative.

Theorem 17.10. If at the point X, the first derivation of the function f(x) isequal to zero ( f'(x,) =0), and the second derivative at the point X, ex-
ists and is non-zero ( f'(X,) = 0), then f"(X,) <0 atthe point X,, the function has a maximum, and for f"(x,) >0, the function has a minimum at the
point X, .

f'(%, +AX) — T'(X,)
AX

Let, for definiteness, f"(x,)>0.Since f"(x,)= AIim0 >0 then

f'(x, + Ax) — £'(X,)
AX

> 0 is in a sufficiently small neighborhood of the point X, .

If Ax<O0,then f'(x,+Ax)<0,if Ax>0,then f'(x,+Ax)>0.
Thus, when passing through the point X, , the first derivative changes sin from minus to plus. Therefore, by Theorem 17.10 X, is a minimum point.

Similary, it is proved that if f"(X,) <0, then at the point X, the function f(x) has a maximum.

17.5. The largest and smallest value of a function on a segment.

Let the function y = f (x) be continuous on the segment [a, b]. As you know, such a function reaches its largest and smallest values on the segment. The
function can take these values either at the interior point X, of the segment [a, b], or on the boundary of the segment, that is, either at X, =a or either at
X, =b. If at x, € (a, b), then the point x, should be sought among the critical points of this function (fig.17.6).

yA A

0 a x, b X Fig. 17.6.
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We get the following rule for finding the largest and smallest values of the function y = f (x) on the segment [a, b]:

1. find the critical points of the function on the interval (a, b)

2. calculate the values of the function at the found critical points and at the ends of the segment x =a, x=Db

3. among the values obtained, select the smallest and largest. These vill be the smallest and largest values of the function on the segment [a, b].

Example. 17.11. Find the smallest and largest value of a function f(x) onasegment [a, b] f(x)=3x*+4x*+1, xe[-2,1].

1. f/(x) =12x> +12x* =12x*(x+1)

f'(x)
r\./\./_w
¢~ # v’
-2 -1 0 1

Fig. 17.7. X, =-1 - critical point.

X, =-1 f(-1)=0;, a=2; f(-2)=17:b=13 f()=8=f_ ,,=f(-)=0; f = f(-2)=17.

max

17.6. Convexity of the function graph. Inflection point.

The graph of a differentiable function y = f(x) is called downward convex on the interval (a, b), if it is located above any its tangents on the interval
(@ b).
The graph of a differentiable function y = f(X) is called upward convex if it is located below any of its tangents on the interval (a, b).

The point of the graph of a continuous function y = f (x), separating its parts of different convexity, is called the inflaction point.
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Yy

U] a c 9]

b 4

Fig. 17.8.

In fig.17.8, the curve y = f(x) is called convex upward in the interval (a, c), convex downvard in the interval (c, b). The point M (c, f(c)) is the
inflection point.

Theorem 17.11. If the function y = f(x) at all points of the interval (a, b) has negative second derivative, f"(x) <0, then the graph of the function on
this interval is convex upwards.

If £"(x)>0 Vxe(a,b),thenthe graph of the function on this interval is convex downvard.
Proof. Let f"(x) <0 VX e (a, b). Let’s take an arbitrary point M with abscissa X, € (@, b) on the graph of the function and draw a tangent through it.

Let’s show that the graph of the function is located below this tangent. To do this, compare at the point X € (a, b) the ordinate y of the curve y = f(X)
with the ordinate 9 - ordinate of the tangent at this point.
The tangent equation, as is known, has the form y — f (x,) = f'(X,)(x—X,) <

Y= 0)+ FO)x=%) =y -y =f(x) = (%)= F(%)(x=%).

According to the Lagrange theorem f(x)— f(x,) = f'(c)(x—X,), c lies between X, and x.
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= y—y= Q) (Xx—%) = F'(X)(Xx—%) =(F'() = (%)) (X~ %)
According to the Lagrange theorem f'(x)— f'(x,) = f"(c,)(c—X,), ¢, lies between c and X, .
Thus, y—y = £7(G)(c — X,)(X—X%,).

We investigate this equality:
1 if Xx>%=>X-%>0c—x,>0and f"(c,)<0 = y-y<0sy<y

—o . 2 —o C—p x
X c C Xy
Fig. 17.10.
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Thus, it is proved that at all points of the interval, the ordinate of the tangent ordinate of the graph, that is, the graph of the function is convex up-
wards.
Similarly, it is proved that for f"(x) >0 the graph of the function is convex downwards.

To find the inflection points of the function graph, the following theorem is used.

Theorem 17.12. (a sufficient condition for existence of inflection points). If the second derivative f”(x) changes sing when passing through the point
X, , at which it is equal to zero or does not exist, then the point of the graph y = f (X) with abscissa X, is an inflection point.

Proof. Let f"(x)<0 for x <X, and f"(x)>0 for X > X,. This means that to the left of x =X, the graph is convex upwards, and to the right it is
convex downwards. Therefore, the point (x,, f(X,)) of the function graph is an inflection point. Similarly, it is proved that if f"(x) >0 for x < x,
and f"(x)<0 for X > X, , then the point (x,, f(X,)) is the inflection point of the graph of the function.

Example. 17.12. Examin the function graph for convexity an inflection point. y = x> —x+5.

Solution. y' =5x* -1, y"=20x>. y"=0 for x=0.

Note, that y" >0 for x>0 and y" <0 for x<0

y"=0 for x=0.

Therefore, the graph of the function y = x*> —x+5 in the interval (-, 0) is convex upwards, in the interval (0, «) is convex downwards. Point (0,

5) is the inflection point.

17.7. Asymptotes of the graph of a function.

The construction of a graph is much easier if you know its asymptotes.
Recal that the asymptote of a curve is a straight line, the distance to which from a point lying on the curve tends to zero wih anlimited distance from

the origin coordinates of this point along the curve.
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Asymptotes can be vertical, oblique and horizontal.

S

Fig. 17.11.

To find vertical asymtotes, you need to find those values of x, near which the function f (x) increases indefinitely in absolute value. Usually these

are discontinuity points of the second kind.

2 _ . . 2
Example. 17.13. The curve y = 1 has a vertical asymptote x =1 since Ilrpox—1 =

. 2
= lim
x>114+0-1
2 2 2

lim = =L -,
orox—1 1-0-1 -0

2
0
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The oblique asymptote equation is sought in the form y =kx+Db, where k = lim ) ,

X—>00 X

b= lim (f(x)—kx). If k=0, then oblique asymptote turns into a horizontal asymptote y =b.

Remark. The asymptotes of graph of the function y = f(x) for x — o and x — —oo can be different. Therefore, when fiding k and b should be

considered separately the caseses than x — « and x — —o.

Example. 17.14. Find the asymtotes of the graph of a function y = xe*.

f(x)
X

X

. Xe )
=lim =lime* =0,

X—0 X X—0

k =lim

X—0

Therefore, in this case there is no asymptote.

But k = fim +®) _ lim *&" _ jim e* =0.

X—>— X X—>—o ¥ X—>—©

b= lim (e’x—0-x) = lim e"x = lim % =0. Therefore, the graph has a horizontal asymptote y =0.

X—>—0o0 X—>—00 X——m @

17.8. The general scheme for studying the graph and construction the graph for a function.

The following checklist is intended as a guide to sketching a curve by hand.

Find the domain of the function (function scope).

Find the points of intersection of the graph of the function with the coordinate axes, if it possible.
Find the intervals where f(x)>0 or f(x)<0.

Find out if the function is even, odd or general form.

Find the asymptotes of the graph of the function.

Find the monotony intervals of the function.

N o s~ w DR

Find function extremes.
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8. Find the intervals of convexity, concavity of the function and inflaction points of the graph of the function.

And based on the analysis, sketch a graph of the function.

Example. 17.15. Investigate the properties for the next function and plot its graph: y =

1-x*"

Solution. Investigate the function and build its graph. Let’s complete 8 points of the study.

1. The function is not defined of x =+1. The domain of definition consists of 3 intervals and the graph of the function consists of 3 branches.

2. If x=0,then y=0. The graph intersects the y-axis at point O(0, 0). If y=0, then x =0. The graph intersects the x-axis at point O(0, 0).

3. The function is sing-positive y >0 on the interval X € (—o,—1) U (0, 1). And the function is sing-negative on the interval x € (-1, 0) U (1,+ ) .
4

. The function is odd because

y(=x) = 1 ; XX)Z = 1_ iz =1 XXZ =—y(x) . Therefore, its graph is symmetrical about the origin O(0, 0). To build a graph, it is enough to examine

itfor x>0.
5. The straight lines x=1 and x=-1 are its vertical asymptotes. Let us find out the presence of an oblique asymptote;
X

2
k= lim =X _ |im

X—>+ oo X x—>to] — X

=0.

2

. X . : . :
b= Ilrp v 0. Therefore, there is a horizontal asymptote and its equation has the form y=0.

X2 +1

6. We find the intervals of increase and decrease of the function. As y' = 1—2)2 , then y'>0 in the domain, than the function y is inereasing on
—X

each of the domain intervals.

X2 +1

7. Examine the function for an extremum. Since y’' = m
—X

then the critical points are x=1 and x=-1 (Y’ does not exist). But they do not
belong to the domain of the function. Therefore, the function has not exstremums.
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8. We study the function for convexity. We find y":

!

, ( X% +1 J _2X(A-X)* = (X +1)-2- (1-X°)(=2%) _ 2X(x* +3)

(L-x%)? (L-x%)* LX)
y">0 <0 y">0 y"<0

-1 0 1
Fig. 17.12.

The second derivative is equal to zero or does not exist at points x, =0, X, =-1, x; =1.

Figure 17.12 shows a diagram of the change in signs of the second derivative of the function under study. Point O(0, 0) — is inflection point of the

graph of the function. The graph is convex upwards at intervals (-1, 0) and (1, «) and convex downward at intervals (—o,—1) U (0, 1).

The graph of the function is shown in fig. 17.13.

£(x)

Oy -axis

Fig. 17.13. y= .
J Y =1o¢
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MNMpakTnyecknn pasgen
PRACTICUM IN MATHEMATICS. PART |

Lesson 1. The Cartesian and the polar coordinate systems. Graphing functions

Classroom assignments

1.1  Scetch the graph for the functions given below:

1) y=2|092C05X; 4) y=2x—|x-2|+1;

3_y2 2% 0<x<2
x> =X ) <2,
— X =2X%,-3<x<0.

/1—cos 2X . 2 1

1.2 Scetch the graphs of the functions specified parametrically:

1) x=-1+2t, y=2-t; 2) x=t, y=t>—4; 3) x=2cost, y=sint; 4) x=1-t? y=t—t>;
5) x=at?, y=bt®; 6) x=2cos’t, y=2sin’t; 7) x=—1+2cost, y=3+2sint;
8) x=2(t—sint), y=2(1—cost).
1.3 Write the equations of the next curves in polar coordinates:
y=x; 2)y=1; 3 x*+y’=4; 4)x*+y*=2y; B)x+y-1=0; 6) x’-y*=a’.

1.4 Scetch the graphs of the functions specified by an equation in a polar coordinate system:

1) r=1; 2) r=20; 3) rcosep=2; 4) r=e®; 5) r=4cos¢g; 6) r=3sin2¢;
6 2 ) .
_o1 - - % . - - =208 3¢; = 365in2¢.
7) r=2(1+cosg); 8)r 3720050 9) r Trsng 10) r=2cos3p; 11) r*=36sin2¢
Homework
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1.5 Scetch the graphs for the next functions:

1) y=Ix*-x=2|; 2) y=x+|x+3|; 3) x=t2+1 y=t;  4) x=t3, y=t?:
5) r =2sino; 6) r=3(-sing); 7) r=4c0s2¢; 8) r= 3 )
1-coso
AnNswers:
1 . 1 a’
131) o=2: 2)r=——: —2: 4) r=2sing; r=—— - 2 - .
3D 4’ ) sing’ 3) r=2; ) r=2sino; 5) sinp+cos¢ ’ 6) p Cos 2¢

Lesson 2. The matrices and the operations on them

Classroom assignments

2.1 Tofind 24+3B—-C, if

1 0 -2 -1 1 0 3 4 5
A= 2 1 -3,B=|2 -3 4|,C=|1 -3 2]|.
-4 3 5 1 -5 6 8 -6 7
2 5 -4
2.2 Calculate 3A+2E, if 4=| -1 -3 1 |, where E — denotes the unit third-order matrix.
2 1 -2
2.3 Calculate the matrix X, if
-1 3 1 -7
2. 2 4+%x: 2 8
0 5 -3 9

2.4  Calculate a matrix transposed to a matrix A:
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2 5 4 1
1) 4= 1 3 —1|; 2)4=|2|; 3) 4=(a a a).
-2 0 1 3
1 0 1 -1 1 3
2.5  For the given matrices A=|-1 3|, B=|3 1| C=| 5 6] youneedto find:
5 0 7 0 -2 3
1) 2A; 2) 2A+3B-C; 3)-2CT,

2.6 For the given matrices A and B you need to find AB and BA, if:

1 0 2 2 7 1 0 7 3
1 1
1) A=|0 -1 3,B=|3 2 —4;2)A=(3 12}5:3 4(;3) A=|4| B=5 -2 3).
4 0 5 1 -3 5 10 2
3 0 1Y)y(-1 1 1
2.7 Calculate |2 -1 0| 2 -2 [ J.
3 0 1 5 0
2.8 Calculate those from the products of matrices AB, BA A2, B?, which exist;
5
1 2 0 -1 -3
1) A= ' B= ; 2) A=(1 -2 3 0)B= ;
3 4 1 2 -4
1
-4 2 4
2 0 3 3 5 -1
3) A= ;B=|-3|; 4) A= B=|-3 0.
-1 2 1 2 -2 0
5 5 1

2.9  Calculate the product of the matrices (AB)C and A(BC):
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-5 0 3
3 0

4 1 -1 -2

A= ,B={-2 1|, C= :
2 -3 2 3

4 3

1 5 3
. 2 -1). . 2
2.10  Show that the matrix A= 3 1 is the root of the polynomial f(x) =x“—3x+5.
2.11  Calculate the value of a matrix polynomial f(A), if:

1 0
1) f(x)=2x%-3x+1 A= :
) f(X)=2x"-3x+ (0 _J

1 -3 0
2) f(x)=x?-3x+2,A=|0 2 1|;
3 -3 2
-1 2
3) f(x)=2x3-x2+3, A= .
) 10 =
Homework
. 1 2 0 1 . 0 2 4 0 5 10
2.12 Calculate: 1) 3A-2B, if A= ;B = ;2) 2B-5A,if A= ;B = .
3 4 1 -2 -6 4 0 -15 10 0
2.13 Calculate (A+3B)?, if
1 4 7 -2 1 -1
A=|2 5 -8/ B=|1 0 2
-3 6 9 4 -1 O

2.14  Calculate those of the matrix products AB, BA, AC, CA, BC, CB that make sense, if
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1 -1 3 0 -1
A= , B= ,C=[-1
[2 0 2) (1 1)

2.15 Check whether the matrices A and B are commute:

[N I N T
—_— O N
o O O

Lo - 2 7 3 7 -6 1
1) A=(1 2 3),B=|5 ;2)/4:(3 SJ;B:(_Z ];S)A: 3 9 4/,B=|-5 3 1],
6 - 15 3 6 -3 -3
2.16 Calculate the value of a matrix polynomial f(A), if:
Lo 2 3 -3
1) f(x):2x2—2x+7,A:[2 l];2) f(x)=3x2+5x—-2,A=[0 1 4
- 5 -2 1
2.17  Calculate the matrix AT, if:
L 5 1 -2 0
1)A=[3 4j;z)A: 3 5 -7[:3A=(1 2 3 4).
—4 1 2
-4 -1 -9 8 15 -12 9 -39 2 1 -2
Answers: 2.1 9 -4 4| 2.2 -3 -7 3| 2.3 -6 0 |; 2.4 1) AT =|5 3 0
~13 -3 21 6 3 -4 —9 -3 4 -1 1
a 2 0 4 -6 s 10 4
2) AT=(1 2 3);3) 4"=|a|;251) |-2 6[;2) |2 3 ;3)(6 _12 6};
a 10 0 33 -3 I
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4 1 11 6 -7 30 3 11 21 -7 35
261) AB=| 0 -11 19 ,BA=|-13 -2 -8|;2) AB:(2 17), BA=|15 -1 20|;

13 13 29 21 3 18 1 1 0
15 -6 9 -1
3) AB={20 -8 12| BA=(13);2.7|-8];
10 -4 6 -1
2 3 -3 -4\ , 7 10\ , (-1 -2
281) AB= :BA= AT = ;B = ;
4 5 7 10 15 22 2 3
5 10 15 O
2) AB=(—1) BA= = 6 90 : A’ u B® — do not exist ;
-4 8 -12 0
1 -2 3 0

;
3) AB= (3}; BA, A%, B? —do not exist ;

14 2 -2

14 11 . ,
4) AB = 0 8 ;BA= -9 -15 3 |; A°uB?—donotexist;

0o 0 -3
00 18 -20
9 (AB)C =A(BC)= 2111)[ 6j;Z) 3 -3 1 ;3)(30 Zj;
0 -12 -3 -
9% 12 2
-2 0 -2 4 550
2.121) ( j [ j 213|-18 54 -8|;214 BAz( ]; AC=( J;Z.lS 1) do not commute; 2) do not commute;
7 16 3 -1 5 2 6 60

51 105 111
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-3 0 O
-1 1 4 5
AB:( ji BA:( 1 J;3)commute: AB=BA=| 0 -3 0 |;

-5 4
0O 0 -3
-25 60 -6 1 3 -5
7 0 T (1 3 T
2.16 1) 4 11 :2) | 60 -18 44 |;2171) A' = ) 4 i 2)A'=-2 5 1 |;
- 70 23 -63 0 -7 2
1
2
3) AT=|"|.
3
4
Lesson 3. Calculating Determinants
Classroom assignments
) 2 -5 a 1 cosx  sinx Y0  a Inx Iny
Evaluate second-order determinants: 1 ; 2 ; 3 ; 4 ;5 .
)‘3 —1‘ )2 —a )—cosx sinx )—1 z{/a_ ) 2 5
-1 5 2 0 —-a -b
Evaluate by various technique: 1) |3 -2 7/;2)|la 0 —c|;
5 -6 3 b ¢ 0
cosao. 0 sina 1 0 4 0 -4 1
3|1 1 0 |; 413 8 -1; 501 3 1.
0 cosa sino -1 4 2 2 4 1
1 2 3 3 4 -5
Evaluate the determinants according to the Sarrus rule and decompose it by the elements of the 1-st line: 1) 4 5 6|; 2) 8 7 -2.
7 8 9 2 -1 8
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. X X+
3.1  Solve the next equation: ;lzo.
-4 x+
1 3 x
3.2  Solvetheequation |4 5 -1/=0.
2 -1 5
x2

3.3 Plot the graph for the next function y=|-1
1

—_ = =
—

34 Evaluate the determinants:

2 50 4 2 4 -1 2
17 0 2 -1 2 3 1
1) ; 2) .
3816 5 1 4
4 9 3 8 2 3

3.5  Evaluate the determinants by bringing them to a triangular form:

2 3 4 2 1 -5 1

3 3 4 1 -3 0 -6
1) ; 2) .

-1 7 4 0 2 -1 2

-2 59 1 4 -7 6

3.6 Evaluate the determinants, having previously simplified them:

181



1 2 3 15
0 —12; 21232 3)2 10 -1 5;
0 3013
3 1 -1 4 3213 4 -3 -15 -6 1
3 1 2 4 01 2 3 3 -1 4
0 -1 6 1 01 2 1 2 3 5
4) ; 5) ; 6)
2 1 3 1 2101 -1 2 0 1
2 -2 3 3210 5 8 1 1
Homework
x> 1 4
3.7 Solve the equation | x -1 2/=0.
1 1 1

3.8 Evaluate det(AB) and verify that det(AB)=det A-det B, if

1 2 3 2 0 3
11 2 4 -3 2

3.9 Evaluate the determinants:

2 -11 0 2 3 -3 4
01 2 - 2 1 -1 2
1) ; 2)

3 -12 3 62 1 0
316 1 23 0 -5

3.10 Evaluate the determinants a triangular form:
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1)

P P W N
P NN
R B~ WODN
N P B W
W N P D

3 0 -1
3.11 Solve the next inequality: 1 Xx+5 2-Xx/<4.
3 -1 2

3.12 Evaluate the next determinants:

0520 |7 3 26
8 354 8 -9 409
1) ; 2) .
7241707 -273
0410 |5 -334

5

Answers: 3.11)13; 2) —2a*;  3)sin2x;  4)2a; 5) m;—z.

3.21) 78; 2) 0; 3) sin2a.; 4) 100; 5)—6.3.31)0; 2) 0.

34 x=-1, x=-4. 35 x=-3. 36 The straight line y=2x-2. 37 1) 0; 2) 16 38 1) 20; 2) 27.
39 1) 38, 2) 168; 3) - 192; 4) 75; 5 - 12; 6) 300. 310 x=-1x,=2. 311 40. 312 1) 0; 2) 48.
36
3.131) 54; 2) 160. 3.14 [— oo;——} .3.15 1) 60; 2) 150.
5

Lesson 4. Inverse matrix. Solving matrix equations

Classroom assignments

4.1 Evaluate A if they are existing for the next matrices:
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0111
2 -1 3 3 01 -3 1 9
-1 2 1 011
1) : 2|4 2 -5|; 3)|-1 2 3. 4)|-5 -3 8|; 5)
w300 6 1 -2 2 41 4 -1 5 tio1
B 1110
4.2 Evaluate the inverse matrix, if it exists:
L 2 | 2 1 1 1 1 2 3
1 02 : A1 2 1]; 4
1 1 2 -4 —-14 -6

4.3 Solve the next matrix equations:

o B S R 4 B o

1 -1 0 -1 2) (-1 6
3)|2 4 -1|-X+|-1 4|=[-1 2].
01 2 0 5/ (5 12

4.4 Solve the next matrix equations:

IO s P R A S P T K S

4.5 Solve the next matrix equations:

1 2 -3 1 -3 0 1 00 0 01 1 -2 3 7
H X3 2 -4j={2 2 -1;2)X0 2 0(=|0 2 0;3)|2 3 -1|-X=|0].
2 -1 0 -1 -2 4 0 0 3 300 0 -2 1 7

Homework

4.6 Evaluate matrices inverse of the matrices given below, if they are exist:
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3 4 2 5 7 1 2 -3 1 2
1) (5 7}; 2)|6 3 4 3)|3 2 -4; 4)
5 -2 -3 2 -1 0 7 8

4.7 Solve the next matrix equations:

5 3 1) (-8 3 0
5 4 1 2 3
1) X:|1 -3 -2|=|-5 9 0}; 2 j-x=:( j;
-1 -2 -3 -2 -1
-5 2 1) (-2 150
1 5 o\ (1 -1 1 -2 3 1 2 3) (1 2
3)(2 ;jx( ) _5j=(2 _3);4) 2 3 -1|-X|4 5 6|=[4 5 6
- 0 -2 1 7 80 (7 8
-10 4 -2
5 -2 _ 1
Answers: 4.1 1) 3 _1 ; 2) does not exist; 3) -—— 7 1 -10¢;
B 38l _g -12 6
4 -——|-7 21 -21|;5)-= _1 . _2 _1.
Y7 7 1 3|7 7 -
-1 -1 -1 2
3 -2 2 1 3o-b -l
4.21) 7 2) 7 3)|-1 1 0]; 4)doesnot exist.
-1 1 3/2 -1/2 Lo 1
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> 3
i 33 13
5
4.31) %5 : 2| 1 &l 3)| = -1
5 s 5
15 8 8 =y
13
-3 3 4 3 -5 6
441) ]; 2) j; 3) ]
-1 3 -5 -4 -4 5
20 -15 13 0 0 1/3 6
451)|-17 13 -10; 2|0 1 0 |; 3)|-5].
-8 5 -4 30 O -3
— 1 -1 1 -4 3 -2
4.61)( . _3} 2) |-38 41 -34/|; 3)| -8 6 -5|; 4)does not exist.
27 -29 24 -7 5 -4
1 4
-—— — 1
7 7
1 2 3
10 4 -2 5/2 1 2 1
471 |4 5 6|: 2y -1, . 3) : | £ = 1.
6 \-14 -8 -2 2 1 7 7
7 8 9
4 2
- — -1
7 7
Lesson 5. Solving non-degenerate systems of linear equations
Classroom assignments
5.1 Solve the systems according to Kramer's formulas and matrix way:
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xX+2y+3z=5,
4x+5y+62z=8,
Tx+8y =2;

1)

—2X+2y—-z2+7=0,
Xx=3y+z-6=0,
3X+y+2z-7=0.

5)

2% —3Xy + X3 =5,
9) Xl + 4X2 - X3 = —3,

3% +2X, +3%3 =1.

Determine whether the given linear system has exactly one solution and solve it.

ANsSwers: 5.1

6)

X =1 X =0,X3=-1;

2x1 —3X2 + X3 = _7,
X +2x, —3x3 =14,

— X1 — Xy +SX3 =—18;

2)

2X—-y+2z2=1,
10) {3x+2y-z=9,
X—4y+3z=-5.

2% — X9 =5,

3)

7)

11)

X +2xy +3x3 =3,
2x; +6xy +4x3 =12,
3x; +10x, +8x5 =21.

2X—y+5z=4,
3x—y+5z=0,
5x+2y+13z=2.

7% —2Xy —3X3+3=0,
X; +5X, + X3 —14 =0,
3% +4X, +2%3 —-10=0.

4)

Homework

X1_2X2+X3=0,

2% — X

=1,

3% +2Xy — X3 = 4.

8 X1+2X2 :8,
3% +4x, =18.

4)

2X+Yy =5, X + X9 —2X%3 =6,
2) 1% +4%3 =0, 3) {x+ 3z=16, 4) 4 2%, +3%, — TX3 =16,
Xp +2%g =—1. 5y-z=10. 5% +2X, + X3 =16.
1) 221; 2 (L;2-3);  3)  (-3:30);
7) x=-4,y=-2,2=2; 8) X=2 X=3; 9)

X]_:O, X2 :3, X3:—1.

52 1) X]_:l, X2:_1, X3:2, 2) X]_:

4) X1:3,X2 :1, X3:—1.

1X2:

w | oo
Wl
I

1X3

—%.;3) x=1,y=3,z=5;
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5)

X:2’ y:l, Z:—l

x=2, y=-12=1;

11)



Lesson 6. Matrix rank

Classroom assignments

6.1 Find the rank for the nrxt matrices:

3 -1 2 2 -1 5 6
1) |4 -3 3[; 2|1 1 3 5
1 3 0 1 -5 1 -3
6.2 Find the ranks of matrices using elementary transformations or the method of bordering minors and specify any basic minor.
1 3 5 -1
-1 2 4 5 -8 1 -7 -5 -5
1)/2 -1 0 6| 2)21311-3)2_1_34-
’ s 1 -1 7
2 -4 -8 4 1 1 -1 1 1
7 7 9 1
-1 0 2 4
3 -1 3 2 5
3 -1
5 -3 3 4
4) , 5) 5 3
1 -3 -5 0 -7
-4 -2 -6 2
7 -5 1 4 1
0 1 7

6.3 At what values of the parameter A the rank of the next matrix equals two:

1 3 -4 A2 3
Dir 0 1];20 r-2 4[?
4 3 -3 o 0 7

6.4  Arethe nextequalities true? ryg <rp, rag <rz.
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-3 1 0 2 0 1
Homework
6.5 Evaluate the ranks of the matrices and specify some basic minor.
1 2 -1 -2
2 -1 3 -2 1 -1 3 1
4 -2 0 0 2 -1 1 01 23
1) ; 2) ; 3)11 2 -1 0
0 0 -6 3 11 2 -5
13 1 1
-4 2 1 -1 4 10 5 -4
25 0 1
6.6  Test the fairness of inequality ra,g <rs+1rg, if
1 -1 1 1 -1 1
A=|2 -1 3,B=|2 -2 2
3 -2 4 -1 1 -1
-1 2 5 8 1 3 -1
ANSWers: 6.1 1) 2; 2) 2. 6.2 1) r=3 |2 -1 6; 2) r=2, ‘_2 j; 3) r=3 2 -1 -3;
2 -4 4 - 7 7 1
3 -1 5 Lo
4)r=3 b -3 4;5 r=2 ‘_2 l‘.6.31)xz3;2)k:0,k=2.6.51)2;2)3; 3)3.
7 -5 1

Lesson 7. Solving arbitrary and homogeneous systems of linear equations

Classroom assignments
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7.1 Solve the next systems:

2X—y+2=-2, 2% + 71Xy +3X3 + X4 =6, )
Xp +2Xy —Xg +4X4 + X5 =1,
1) {x+2y+3z=-1, 2) 13X, +5X, + 2% + 2%, =4, 3yt TS
2X1_3X2+2X3+X4_X5:3
Xx—-3y—-2z=3. 9% +4Xy + X3 +TXy = 2.

3X; — X5 + Xq + 2X: =18,
1 2 3 ° Xl_X2+X3_X4=_2,

X1 +2Xy + Xa —3X4 + X =1, 2X1 —5Xy 4+ X4 + Xe =—7,
! 278 TS ! 2T X +2Xy —2X3 — X4 =5,
4) { X —3Xp + X3 — 2%4 + X5 =3, 5) { ¥ — X, +2X5 =8, 6) ) 3. 12 1
X, — Xy —3Xz +2X, =1,
X1+7X2+X3_4X4+X5=5 2X2+X3+X4_X5:10, 1 2 3 4

Xq + 2X, +3X3 — 6%, = -10.
Xp + Xy —3X3 + X4 =1. ! 2 3 4

X —3Xy +4X3 — X4 =2, Xg — 9%y +3%3 — X, =1,
7) 2% +3X; + X3 +9X4 =3, 8) 12% —10x, + 3x4 =0,
3% + +5X3 +4x, =6. 4%y — 20Xy +6X3 + X4 = 2.
7.2 Solve a homogeneous system and find the fundamental system of solutions.

3% +2X, + X3 =0,
2) 2% +5X; +3%3 =0,

X +2Xy — X3 =0,
1 {1 27 %3
3% +4X, +2X3 =0.

3) 2X1+2X2 _X3 +3X4 =0,

X1‘|‘X2 +3X3_X4:0.

7.3 Solve the next systems by using the Gauss method:

X+ X, — x;=-4, X+ X, +x3=3, 3x—y+2z=0, X+2y+3z=6,
1) ¢ x, +2x, -3x; =0, 2) 4 2x—x,+x3=2, 3){4x-3y+3z=0, 4) {4X+5y+62=09,
- 2x —2x, =16; X +4x, +2x3=35; x+3y =0; 7X+8y = -6,
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Homework

7.4 Solve the next systems:

Xp + 2% + X3 = —1, X — Xp +3%g =1, 2% +3% =1, X — 5%y + 3% — X4 =1,
1) 12% +3% +5% =3, 2) 12 +3%, 2%, =2, 3) /0 +24X2 :11' 4) 2% —10%, +3%, =0,
3x, + 5%, + 6 = 7. A + Xy + 4% = 4. 4 * X =5 4% — 20X, + 6% + X, = 2.
4%, +5X, =1.
7.4 Solve the next systems:

X1+2X2 _X3 ZO,

3% — Xp +2X3 + X4 =0,
X +2Xy —4X3 —2X%4 =0.

Answers: 7.1 1) The system is incompatible; 2) {Cl —9C, _2, 10-5C, +Cp : Cl,Czj

VC,,C, cR}:
11 11 ! 26}

) {[9—01—1402 ~C; 4C,-7C,-3C;-1

, Cl’ Cz, C3J| VC]_, Cz, C3 S R},
7 7

2 {[—3—5c1+13c2—5c:3, 44Cy

C, C
5 5 2 3}

VCl, Cz, C3 € R} ,

5) % =5 X =4, X3=3, X;=1 X;=2; 6) {(C,C+1C+2,C+3fVCeR};

7) The system is incompatible; 8) {(Cl,cz,

7.21) {(gcl,%,clj

3-5C, + 25C, 10(:2—2clj
9 3

VC]_,CZ S R} .

VCleR}; (315); 2) %=X =%=0;
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3 (7768, ¢ 5 Czj

vCC, ER}; (~1,1,0,0) (—

19 7 38
VC:LCZER y ——,_,1,0 y _1_7a0a1 ;
3 2 3

35 35
\V/C]_,CZ S R}, [1,0, j [01 ]
4 4 2 2

~ | ©
o
~ o
N

4)

1C1! CZJ
2

5)

3C, + 6C2 5C, +10C,
C]_! 21 4

55
{( 190, +38C, 7C;-14C;
{
&

8C1+9C2 | 6C;+23C, 22C;-11C, 4 3 11 9 23 11
6) , ,C.,C, [VCCyeR}, | ———,—=1,0|| —,-—,-—=,0,1].
26 26 13 13 13 26 26 26
7.3 ) —C-82C+4; C) CeR; 2) the system is incompatible;  3) (-=3C;C;5C), CeR; 4) (-2;1;2).
o ) 5- 7C 8C
7.4 1) the system is incompatible; 2){|——,—.,C||VCeR 3) x =-Lxp =1;
5 5
3-5C; +25C, 10C, -2C,
4) C].’CZ’ y VCl’CZ eR .
9 3

7.5 1) X1 = 0, Xo =0, X3 = 0, 2) {(0,2C1 +C2,C1,C2) | VCl,CZ S R}

Lesson 8. Vectors. Linear operations on the vectors. Scalar product of the vectors

Classroom assignments

8.1 Determine for which vectors & and b the following conditions are met:

E
o

1) |a+bl=a|+|b|;2) |a+bl=a|-|b]|;3) |a+b|Ha-b]|;4) |a+b|=0;5)

jsbll
(=

8.2 Vectors are given a=3i —2] +6k and b =-2i + j . Define projections on the coordinate axes of the following vectors:
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1) _%6; 2)2a:  3)2a+3b.
8.3  Check the collinearity of vectors d(2;—13) and b(-6;3;—9) . Establish which one is longer than the other and how many times, how they
are directed - in one direction or in opposite directions.
8.4 For what a and B the vectors d@=ai -5/ +3k and b =i +2; —ak are orthogonal? For what a and 8 the vectors @ =ai -5/ +3k and
b =i +2j—ak are collinear?
8.5 Evaluate the vector cosine guides a(6;—2;—3).
8.6  Define the modules of the sum and difference of vectors a=3i -5j+8k and b =—i + j —4k .
8.7 The vertices of the triangle are given A(4;-12), B(0;1;-3), C(6;5;3). Find:1) the coordinates of the vector ﬁ, where AD is the median
of the triangle; 2) the coordinates for the point O of the intersection for the medians of this triangle.
8.8  Consider the nexr points: A(4;4;0), B(0;0;,0), C(0;3;4), D(1;4;4). Prove that ABCD is an isosceles trapezoid.
8.9  Given a triangle with vertices at points A(2:3:-1), B(4:1;-2), C(1:0;2). To find:
a) inner angle at vertex C; b) square of a triangle ACC; c) length of height lowered from vertex C on AB.
8.10 Given points A(-12;1), B(2;1;—3),C(3;0;5) . Pick a point so that the quadrilateral is a parallelogram.

8.11  Evaluate the next expression: (f+2f, m—f),if m=2a+b,i=a-3b, |d|=|b|=2, (é,AB):%,

8.12 The vertices of the quadrilateral are given A(L;-2;2),B(L4;0),C(-4;11), D(-5; —5;3). Prove that its diagonals AC and BDare mutually

perpendicular.
8.13  Calculate the inner corners of a triangle ACC, if A(L;2;1), B(3;—17), C(7;4;—2). Make sure that this triangle is isosceles.

8.14  Calculate vector projection a=>5i +2j -5k on the vector axis b =2i — j+2k .

8.15 Vectors are given a=(1;-34), b=(3;-4;2), ¢=(-1;1:4). Tofind pr. 4.
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8.16 What kind of work does power do F =(2;-1;—4), when the point of its application, moving in a straight line, moves from the point

A=(1;:-2;3) to the point B =(5-6;1)?

Homework

8.17 Find the length of the diagonals for the parallelogram constructed on the vectors &(3;—5;8) and b(-1;1;—4) . Calculate the cosine of the
angle between its diagonals.

8.18 Three vectors are given a(-2;1,1), b(%;5;0) and €(4;,4,-2). Calculate pr6(35—25).

8.19  Atwhat value o the vectors a=oi —3j+2k and b =i +2j—ak are mutually perpendicular?

8.20 Vectors a and b form the angle (ng. Knowing that |a| = +/3,|b|= 1, calculate the angle o between vectors p=a+b and G=a-b.

8.21  Find the coordinates for the vector b that collinear to the vector = (2;1; —1), provided that (a,b) =3.

8.22  Given points A(—10;2), B(2;3;—4), C(2;3;4). Find the vector coordinates ﬁ, if it is known that the point D divides the segment BC with
respectto A =3.

8.23  Find the direction cosines of the vector AB, if A(3;4;-5), B(~1,8,-3).

8.24  Find the vector b , orthogonal to the vector &=1 +2j —K and satisfying the conditions (5,7):3; (5, T):Z.
Answers: 8.11)aT™b;2) a1t b, |§|2‘5‘;3) dlb;4a=-b:5aMb; a=0 b=0.
1
8.21) (1; ——; 0] :2) (6;,-4;12); 3) (0; -1;12).
2

8.3 The vectors oppositely directed, the vector b 3 times longer than the vector a.
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3 6 2 3
841) a=-5;2) a=-10;p=——.85cosaa=—; cosp=——; COSBp=——.

5 7 7 7
_ . — 10 5 2 . .
8.6 [a+b|=6, |a-b|=14.8.71) AD=(-14,-2);2) 0:(—;—;—} 88 aMb,la z\b\.
3 33
18 V170 V170
. ; ; .8.10 D(0;1;,9). 8.11 — 42.
89a)arccosm,b) >0 ;- 8.10 (0;19).8
12 V122 V122 2
8.13 cos/A=—-—; c0s/B=——, c0sZC=——-.8.14 ——.8.155. 8.16 20.
49 14 14 3
- - ~ 2 - —
8.17 |a+b|=6, |a-b|=14, coswzg. 8.18 pr.(3a—-2b)=-11. 8.19 a=-6. 8.20 oczarccosT. 8.21 bz(l;%;—%j. 8.22 AD(3;3,0). 8.23
7
2 2 1 ~
cosa, = ——; cosB =—; cosy =—. 8.24 b(3;2,7).
3 3 3
Lesson 9. Vector and mixed vector products
Classroom assignments
9.1 Vectors a and b are orthogonal. Knowing that |d|=3,|bl=4, calculate: 1) I[a,b]l;

2) [[a+b,a-b]|; 3) I[(38+D), (@-b)].
9.2 Vectors are given d=(3;,-1 -2),b =(L 2;,-1) . Find the coordinates of vector products: 1) [d, b]; 2)[2d+b, b]; 3)[2d—b, 2d+D].
9.3  Find any non-zero vector ¢, perpendicular to the vectors & = (1;2;3) and 5 =(0;2;5).

94 Calculate the sine of the angle formed by the vectors @ =6, +k and b =i +3] .
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9.5  The vertices of the triangle are given A(%;-1; 2), B(5; —6; 2), C(L; 3; -1). Calculate the area of the triangle and the length of the height dropped

from the vertex B to the side AC.

9.6 Prove the validity of the identity [5—5, a’+6]= 2[5, 5] and find out its geometric meaning.

— —

9.7  Consider the next vectors: 2 +]-k;b=i—-jJ+3k,E=]+k. Find: 1) [[5,516];

2) [a, b.c]].
9.8  Itis known that +b+¢ =0. Prove that [é,B]z[E, dl= [5,6].

9.9  The force F =(3;4;2) is applied to the point C = (—2;1,-2). Determine the magnitude and guide cosines of the moment of force relative
to the origin.
9.10 Find out if the vectors are complanar:

a) a=(0:11), b =(1151), & = (1;0,0); b) @=(4-20), b=(-363), ¢ =(;4;-5).
9.11  Prove that the four points AL 2; -1), B(0; L, 5), C(-L 2; 1), D(2;13) lie on the same plane.

9.12 Tetrahedron vertices: A(2;3;1),B(4;1,—2),C(6;3;7), D(-5;—-4;8). To find the volume of the tetrahedron and the length of the height

lowered from the vertex D.

9.13  Find out the orientation of the triple vectors:

1) d=1-]+2K:b=3 +4]+K,C=-2 +3] —K ;
2)d=5+]-2K;b=-3 +2k,c=2i + ] —K.

9.14  Find the height length of the parallelepiped built on the vectors a=1 —5] +k,b =47 +2k,& =7 — j -k , if the basis is the parallelogram built

on the vectors G and & .

Homework
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9.15  Find the vector ¢, orthogonal to the vectors & =(2;-3;1) and b = (1,-2;3) and satisfying the condition (¢,i +2j —7k)=10.
9.16 Calculate the area of the parallelogram constructed on vectors &= (0;-11) and b = (1;1;1).

9.17  Calculate the sine of the angle formed by the vectors a=(2;-2;1) and b =(2;3;6).

9.18  Setwhether vectors are complanar &,b, ¢, if a=(2;3-1), b=(%-13),¢ = (1,9;,-11).

9.19 Do the dots A(5;5;4),B(3;8;4),C(3;5;10), D(5;8;2) belong to the same plane?

9.20  Find out whether the right or left triple form the next three vectors a=(3,4;0), b = (0;-4;1),€(0;2;5).
9.21 Calculate the volume of the tetrahedron ABCD and the length of the height omitted from the point D to the base of ABC, if the coordinates
of its vertices are known 4(0,0,1), B(-3,2,3), C(2,-1,3), D(1,3.8).

9.22  Three forces are given F =(2:-1;3), F, =(3;2:-1), F; = (~4;;-3), attached to the point C=(-~1;4;-2). Determine the magnitude and guide

cosines of the angular momentum of equal force relative to the point 4=(2:3;-1).
Answers: 9.11) 12; 2) 24; 3) 48.9.2 1) (5;1,7); 2) (10; 2; 14); 3) (20; 4; 28). 9.3 ¢ =4i -5/ + 2k .
23 . . . . . . .
9.4 |— .9.5 2;5. 9.6 The area of the parallelogram, the sides of which are the diagonals of a given parallelogram, is equal to twice the area of this
185

parallelogram.

. I 2 2 11
9.7 1) —4i -2)+2k; 2) 2]+2k . 9.9 15; coso = —; COSP =——; COSy = ——. 9.10 a) ea;
3 15 15
154 i 16 .
b) ufr. 9.12 —11. 9.13 1) right three; 2) left three. 9.14 —_— 9.15 ¢=(7,51).
3 314
9.16 J6 . 9.17 sin ¢ = % . 9.18 Coplanar. 9.19 No, they don't. 9.20 Left.
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29 29
921 —,——.9.22 \/&;cosa:—L;cosB:

4
—; COS .
6 V137 J66 Jo6 " s

Lesson 10. A line on a plane

Classroom assignments

10.1  Write the equation of a straight line passing through the point A(=1; 2) perpendicular to the vector M;M, , where M1(2; =7), M,(3; 2).

10.2  Write canonical and parametric equations of a line passing through the point A(3;—2) in parallel: 1) vector S(L; 5) ; 2) axes Oy .
10.3  Write the equation of a straight line passing through the point A(-1;8) and forming an angle with the abscissa axis equals to 37? :

10.4  Write the equation of a line passing through the points ,(2;1), M,(4;5) and to find the point of its intersection with coordinate axes.

10.5  Find the equation of a line passing through the point M, (4:3) that is the base of a perpendicular lowered from the origin to this line.

10.6  Atwhat value A is the straight line 4x +4y—13=0 forms an angle o =45° with the Ox axis?

10.7  The vertices of the triangle are given 4(2;-3), B(4;5), C(—3;4). To find: 1) the equation of the side AB; 2) equation of the median drawn
from vertex C; 3) equation of height drawn from the vertex C.

10.8  Write the equation of a straight line, parallel bisectrix of the second coordinate angle and cutting off a segment of 3 on the Oy axis.

10.9  Find the equation of a straight line passing through a point 4(2;-3): 1) parallel to the straight line y=2x-9; 2) perpendicular to the
straight line x+3y—-2=0.

10.10 What is the mutual arrangement of two straight lines, the angular coefficients of which are equal to — 2,5 and — 0,4?
10.11 Find the distance from a point M(~1;2) to the next straight line:

RN 2) 1"
y=2+73t, y=-3-31.

10.12 Which lines of a given pair intersect, parallel, or coincide? If the lines intersect, find the coordinates of the point of their intersection:
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1) 2x+y-1=0and x-3y-2=0; 2) 2x+6y=2 and x+3y-1=0;

3) —x—y=3and 3x+3y+1=0; 4) x2_1:y+11 and x—12:yI2.

10.13 Find the distance between the straight lines 12x -5y —26=0 and 12x -5y +13=0.
10.14 Find the point projection for the point A(2;6) on the straight line 3x+4y-5=0.

Homework

10.15 Find the equation of a line passing through the intersection point of a line 3x—2y—-7=0 and x+3y-6=0 and cutting off a segment of 3
on the abscissa axis.
10.16 Find the intersection point O of quadrilateral diagonals ABCD, if A(-1-3),B(3;5), C(5;2), D(3;-5) .
10.17 The vertices of the triangle are given ABC: A(L 2), B(2;-2),C(6;1). To find:
1) the equation of the side AB;
2) the equation of the height CH;
3) the equation of the median AM;
4) the equation of a straight line passing through the vertex C parallel to the side AB;
5) the distance from the pointC to the straight line AB.
10.18 Find equations of perpendiculars to the line 3x+5y—-15=0 drawn through the intersection points of a given line with coordinate axes.
10.19 Find the equation of a straight line passing through the point A(-2; 3) and constituting with an angle axis Ox: a) 45°; b) 90°; c) 0°.
10.20 Find a point B that is symmetric to the point A(8;12) relative to the straight line x—2y+6=0.
10.21 Find one of the angles between the straight lines:

1) 2x+3y—5-0 and x—3y—7=0:2) 1* = _ and x=dtt
x+3y—5=0 and x—3y—7=0; an :
g g +7 y=+/3t+2
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X=3 y+2 [x=3+t X=3 y+2
Answers: 10.1 X+9y-17=0. 10.2 1) —= , ; 2) —= , X=3.
1 y=-2+5t 0 1
X+y-7=0 2x—y—3=0;(0;-3), (1,5,0) 4x+3y—25=0

10.3 : 10.4 : 10.5 : 10.6 4,
4x-y-11=0 X+2y-5=0 X+4y-13=0 y=—X+3

10.7 1) ; 2) ; 3) : 10.8

8
2Xx—y-7=0 3Xx-y-9=0 —
10.9 1) ; 2) 10.10 Intersect. 10.11 1) 0; 2) V13 .
(E’QJ (9:-5) (-1.2)
10.12 1) \7 7J; 2) match; 3) parallel; 4) . 10.13 3. 10.14 .
x-1 y-2
x=3 0(3,1/3) —_— X—4y—-2=0 5x+6y-17=0
10.15 10.16 10.17 1) 1 -4 2) ; 3) ;
4x+y—-25=0 5x—-3y—-25=0,5x-3y+9=0 X—y+5=0
4) ; 5) 10.18 10.19 1) ;
7 T .
X+2=0 y—-3=0 B(12; 4) arccos—— — =60
2) )| .10.20 .10.211) ~v130 ;2) 3

Lesson 11. The plane

Classroom assignments

11.1  Let us consider the next points M;(3;-12) and M,(4;—2;-1). Find the equation of the plane passing through the point M; perpendicular

to the vector M{M, .

11.2 Find the

equation

for a plane passing through

1) My(3-12), My(4;-1-1) and M3(2;0;2); 2) M;(L3;4), M5(3;0;2) and M3(2;5;7).
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11.3  Specify the features in the location relative to the coordinate system Oxyz of the plane specified by the equation: 1) 3y +2z-1=0; 2)

2X+y-52=0;
3) 2x—-y-1=0; 4) 2Xx+y=0; 5) X+z=0; 6) 3y—-4z=0; 7) 2x+3=0; 8) z+4=0;
9) y=0.

11.4 Find the lengths of the segments cut off on the coordinate axes by the plane 3x-2y+z-6=0.

11.5 Find an equation for a plane passing through the point M(L-L0) parallel to the next vectors: 1) d=(0;2;3) and b =(-14;2); 2)
5 =(2-13) and 5, = (3,0:1).

11.6  Find an equation for a plane passing through the point M (L,—3;-2) in parallel: 1) plane 3x—2y+4z-3=0; 2) plane Oyz.

11.7  Find the equation of the plane passing through the point M (1; 0; —2) perpendicular to the planes x—2y+z+5=0 and 2x—y+3z-1=0

11.8 Find the angle between the planes: 1) X+4y—-2+1=0 and X+y-2z-3=0;
2) X+2y—z+5=0 and 2x-y+z-3=0.
11.9  Given a pyramid with vertices A(2;2;-3), B(311), C(-10;5), D(4;—2;-3). Find the length of the height lowered from vertex D to the plane
ABC.
11.10 Determine which of the following pairs of planes intersect, parallel or coincide:
1) x—y+3z+1=0 and 2x-y+52-2=0;
2) 3X+2y—z+2=0 and 6x+4y—-2z+1=0;
3) 2x+6y+2z-4=0 and 3x+9y+3z-6=0.
11.11 Find the distance between the planes 2x -3y +6z—-21=0 and 4x—-6y+12z2+35=0.

Homework
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11.12 Find the equation of the plane passing through the point M perpendicular to the vector fi for the next cases: 1) M (3,5-1); fi(13;2;1); 2)
M (2;0;0); 7i(0;7;0); 3) M (0;3;-1) ; fi=M;M, , where My(L-10), M»(3,0;2).
11.13 Make—the equation of the plane passing through the point M (-12;3) parallel to the plane passing through the points
M;(L0;-2), M, (3;4;5), M5(-1,2;0).
11.14 Determine at what value of the parameter o the plane ox+(2a—-1)y+z-5=0:
1) parallel to the plane 2x+3y+z—-4=0;
2) parallel to the plane y—z+7=0;
3) perpendicular to the plane 3x+y-z=0;
4) perpendicular to the plane Oxz.
11.15 Make-up the equation of the plane passing through the points M1(12;3) and M,(2,1,1) perpendicular to the plane 3x+4y+z—-6=0.
11.16 Find the distance from the point M (2;1,1) to the plane x+y—-z+1=0.
11.17 Find the intersection point of the planes Xx+y+z-6=0,2x-y+z-3=0, Xx+2y-z-2=0.

Answers: 111 X—y—-3z+2=0. 11.2 1) 3x+3y+z-8=0; 2) 5x+8y—-7z-1=0.
11.3 1) parallel to the axis Ox; 2) passes through the origin coordinates; 3) parallel to the axis Oz
4) passes through the axis Oz; 5) passes through the axis Oy; 6) passes through the axis Ox; 7) parallel to the plane Oyz; 8) parallel to the plane Oxy;
9) coincides with the plane Oxz. 11.4 2; 3; 6. 115 1) 8x+3y—-2z-5=0; 2) x-7y-3z-8=0. 116 1) 3x—-2y+4z-1=0;

J6

2) x=1. 11.7 5x+y—-3z-11=0. 11.8 arccos—. 11.9 1) intersect; 2) parallel;
3

3) coincides. 11.10 h=5. 11.11 5,5. 11.12 1) 13x+2y+2-48=0; 2) y=0;

3) 2X+y+2z-1=0.11.13 x+3y-2z+1=0.11.141) a=2;2) =0;3) «=0,4;4) 0 =05.11.15 x—y+z-2=0.11.16 V3 .11.17 (L2:3)
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Lesson 12. Line in space. Lines and planes in space

Classroom assignments

12.1 Make-up-the canonical and parametric equations of a line passing through the point M(2;0;-3) parallel to the vector & =(2;-3,5).

122 Make—up the canonical and parametric equations of the line:
L x+y+22—3:0,2) 2X+Yy+2-1=0,
X—-y+2-1=0; 3X+2y+z-2=0.

) ) ) x-1 y-2 z+3 x+1 y z-10
12.3  Find the angle between the straight next lines: = = and —=—= .

1
12.4 At what values a are the lines = = and —=—=—:
a 1 a 1 a 1

1) intersect; 2) interbreed; 3) parallel; 4) coincide?
125 Make equations for the sides of a triangle with vertices in points A(—3;2;1); B(L-10); C(2;3;-5).
x+1 y—2 45
2 3 4

12.6  Find the equations of a line passing through the point M(2;—5;4) parallel to the straight line

X+1 -3 z
12.7  Find out the relative location of the line and the plane: —— = = =— and x-3y+2z-5=0.
2 4 5
12.8  Find the canonical equation of a straight line passing through the point M (2;—1;3) perpendicular to the plane 3x—y+2z—4=0.

12.9  Find the angle between the straight line and the plane:
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x-1 +2 z - =
) 22 YTE T nd Axady—T241=0:2) {X+4y 2247=0, 4 3x+y—z+41=0.
3 ) _6 3X+7y—-2z2=0
. . . . oo Xx=2  y+l 2 X y 2
12.10 Find the equation of a plane passing through a point M (2;0;-3) parallel to the next straight lines; —— =——=—and — =~ =—.

3 1 1 1 2 1
x-1 y+2 z-2 |
= = with plane 3x-y+2z+5=0.
2 1 1

12.12 Find the point projection A(3;—14) on the plane 2x+y—-z+5=0.

12.11 Find the coordinates of the point of intersection of the line

12.13 Find the point A, symmetric to the point P(6;-5;5) relative to the plane 2x—y+z-4=0.
X+7 y+2 7+2
1 2 3

and the distance from that point to that line.

12.14 Find the point projection A(2;3;1) to the line

Homework

12.15 Find the equation of a line passing through the point M (4;-3;2): 1) parallel to the axis Ox; 2) parallel to the axis Oz; 3) perpendicular to
the plane X—-3y+2z-5=0;

4) perpendicular to the plane Oxz.
Xx—-2y+3=0

and plane 2x+3y—-z+1=0.
3y+z-1=0

12.16 Calculate the angle between the line {

12.17 Find the equations of the perpendicular drawn from the point A(3;—5;1) to the next plane: 1) 2x—-y+5z+3=0; 2) 3x—-2z+4=0; 3)
y-1=0.
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12.18 Do the next straight lines intersect?

X+2 -3 1-4

g X=Y+4:Z—3_2 {x+3y—4z+7=0, and {x—y+3z—6:0,7

nd —=—— :
2X+y—-2+3=0

-1 2 3 3 2 5 3X+y+2z-5=0,

12.19 Find the parametric equations of the median of a triangle with vertices A(3;6;-7),B(-5;1,—4),C(0;2;3) , drawn from the vertex C.

12.20 Find the coordinates of the point Q, symmetric to the point P(—3;1,-9) relative to the plane 4x—-3y—-z-7=0.

12.21 Find the coordinates of a point Q, symmetric to the point P(2;-5;7) relative to a line passing through the points M¢(5;4;6) and

M, (-2;-17;-8)

12.22 Find the angle between the straight lines:

ANSwers:

2)

4)

12.7

2)

X+2 z+1 X+y=0, +2=0,
1)—=X=— and axis Ox; 2){ y and {y
3 4 0 Xx—y=0, y—z+2=0.
X=2+2t, X=2+3t,
X-2 'y z+3 Xx-2 y-1 z
12.1 —=——=——y=-3, 12.2 1) = = 1y =1+t,
2. -3 5 |7--345t S P
Xx=-1-t,
x+1 y-2 z-1 T
= = Ay =2+t, . 12.3 —. 12.4 1) a=3; 2) aztlia#3; 3) a=-1;
-1 1 1 z=1+t. 2
x+3 y-2 1-1 x+3 y-2 1-1 x-1 y+1 2 X-2 y+5 1-4
a=1. 125 SR ; AL ; —=y—:—. 12.6 I :
4 -3 -1 5 1 -6 1 4 -5 2 -3 4
i i x-2 y+1 z-3 (62
A straight line parallel to a plane. 12.8 = = : 12.9 1) arcsin — |;
3 -1 2 63
(19
arcsm( \/_]. 12.10 X+2y-5z2-17=0. 12.11 (-3-4,0). 12.12. (L-2;5).. 12.13 A(-271).
117
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X-4 y+3 1-2 X-4 y+3 1-2 X-4 y+3 1-2
12.14 (-5,2;4), /59 . 12.15 1) AL 2) I e 3) ERAL
1 0 0 0 0 1 1 -3 2
x-4 y+3 1-2 _ 5 s Xx-3 y+5 z-1
4) = = : 12.16 sinp=—; p=~45°36'. 12.17 1) = = ;
0 1 0 7 2 -1 5
X =2t,
x-3 y+5 z-1 x-3 y+5 z-1
2) = = ; 3) = = : 12.18 1) no; 2) yes. 12.19 y=-3t+2,
3 0 -2 0 1 0 z=17t+3.

3 6
12.20 Q(1,-2;-10). 12.21 Q(4,,-3).12.22. 1) coSp =—; 2) COSQP = ——.
5 J61
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Lesson 13. Second-order curves on a plane

Classroom assignments

13.1  For the following ellipses and hyperboles, find: a) semi-axes; b) the distance between the focuses; c) eccentricity ¢; d) focal points; e)

vertex coordinates; (e) for hyperbolas, make up the asymptote equations.

1) ﬁ+y_2:1; 2) X—2+y—2=1; 3) X—2—y—2:—1; 4) i—y—zzl.
16 25 25 16 144 25 144 25
13.2  Find the equation of an ellipse whose foci lie on the abscissa axis and are symmetric with respect to the origin, if:
1) its semi-axes are 1 and 7;
2) the distance between the focuses is 8 and the semi-minor axis is 3;

3) semi-major axis is 5 and the point M(3;—2;4) belongs to the ellipse.
13.3  Find the equation of an ellipse whose foci lie on the ordinate axis and are symmetric with respect to the origin, if:
1) its semi-axes are 2 and 5;
2) the focal length is 12 and the semi-major axis is 13;
3) the minor axis is 10 and the eccentricity € = E :
13.4  Find the hyperbole equation, if:

1) her focuses are at points F;(7;0), F,(—7;0), and the real semi-axis is 5;
2) hyperbole passes through a point MO(G;—Z,S\@ ) and its vertices are at points A/(—4;0), A(4;0).

13.5 Find the equation of a hyperbola whose foci lie on the ordinate axis and are symmetric with respect to the origin, if:

1) its real and imaginary semi-axes are 11 and 4 respectively.;
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5
2) the distance between the focuses is 10 and the eccentricity e = —;
3

3
3) equation of one of the asymptotes y = — x, and the actual semi-axis is 6.
4

13.6  Find the canonical parabola equation, if:
1) its vertex coincides with the origin, and the focus is at a point F(2;0);
2) the branches are directed upwards, and the parameter is 4;
3) headmistress equation y = 3, and the focus is at the point F(0;-3);
4) its apex coincides with the origin, the parabola passes through the point M(9;-6) and the abscissa axis is the axis of the parabola.
13.7  Determine the type and location of the line of the second order, plot it:
1) 9x? +4y? —18x+16y —11=0;
2) 9x? —16y? +54x + 64y —127=0;
3) x> —10x—8y +49=0;
4) y2 —2x—-4y—-2=0;
5) 4x? —9y2 —16x-18y+7=0;

6) X° +4y% +4x—32y+68=0.

Homework

13.8  Write the canonical ellipse equation, if it is known that:
1) the focal length is 8, the semi-minor axis is equal to 3;

2) the semi-minor axis is 6, the eccentricity is equal to 4/5.
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13.9  find focal coordinates and ellipse eccentricity 4x2 + y2 =4.
. . . . . . 33 42 . iy
13.10 Find the canonical equation of an ellipse passing through points M;| ——; —1| and M,| —1, —— |, and to find its eccentricity.
2 3
13.11 Find the hyperbola equation, if its asymptotes are given by the equations X+2y =0, and the distance between the vertices lying on the

Ox axis is 4.
13.12 Compose the canonical hyperbola equation, if it is known that:

1) the distance between the focuses is 30 and the distance between the vertices is 24;

2) the real semi-axis is 4 and the hyperbola passes through the point M (2;4\/5) .

13.13 Find the equation of a hyperbola whose vertices are in the foci and the foci are in the vertices of the ellipse 6x° +5y2 =30.

13.14 Find the canonical parabola equation, if it is known that:
1) the parabola has a focus F(0;2) and a vertex at the point O(0;0);

2) the parabola is symmetrical with respect to the Ox axis and passes through the point M (4;—-2) .

13.15 Find the length of the common chord of the parabola y = 2x? and circles x? + y? =5.

13.16 Write the equation of a parabola passing through the points (0; 0) and (—2; 4), if parabola is symmetrical relative to: 1) axis Ox; 2) axis Oy

13.17 Write the canonical parabola equation whose foci coincide with the foci of the hyperbola X2 — y2 =8.

13.18 Which figure corresponds to each of these equations? In the case of a non-empty set depict it in the coordinate system Oxy:
1) X2 + y2 —4x+6y+4=0;
2) 3x2 —4y? —12x—8y+20=0;

3) y? —3x—4y+10=0;
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4) 2x? +3y? +6X+6y+25=0.
5) 4x? +25y% +4x—10y —8=0;
6) X2 —y% +2x—2y =0;

7) X% —6x+2y+11=0.

Answers: 13.1 1) a) a=4,b=5; b) 2C

I
(o))

e) (40),(-40),(0;5), (0;-5);

2)a) a=5;b=4;b) 2c=6;c) e= ° :d) Fi(30), F,(=30); ) (50),(~50),(0;4), (0:-4);
5

3) a) a=12;b=5; b) 2c =26; C)

f) y=+t—X; 4) a) a=12;b=5; b)

5
e) A(-12;0), Ay(12,0); f) y=+—x.
12
2 2 2 2 2 2
X X X
13.21)—+y—=1;2)—+y—:1;3)_+y_:1_
49 1 25 9 25 9

2 2 2 2 2 2
X X X
1331) —+ -1 L g X g
4

25 133 169 25 169
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3
c) e=—; d)
5
F(0;-13), F,(0:13); e)
13
c) e=—/ d)
12

F1(0,-3), F»(0:3);

A(0;-5), A(0;5);

F.(13;0), F,(~13;0);



X2 2 2 2

y©o Xy
1341) —--—=1; 2) —-~—=1,
25 24 16 15
2 2 2 2 2 2
X X X
1351 -2 _1g XX g X g
121 16 9 16 36 64

13.6 1) y? =8x;2) x? =8y, 3) x*> =—12y; 4) y? =4x.

13.7 Find out which figure corresponds to each of these equations, and (in the case of a non-empty set) depict it in a coordinate system is at the point O”.

2 g2 X2 y2

1) ellipse — +—=1,0'(;-2); 2) hyperbola — —— =1, 0'(- 3;2);
4 9 16 9

3) parabola X% =8Y,0'(5,3); 4) parabola Y2 = 2X, 0'(-3;2);

5) the pair of intersecting lines 2x—3y—7=0 and 2x+3y—1=0; 6) the point O'(- 2;4).

2 2 2 2 2 2 2 2
X X X X
13.81)—+y—:1;—+y—:1;2)—+y—:1;_+y_:1_
25 9 9 25 3 100 100 36
V3 x2 y? 5
13.9 R0.-v3) F0.3) e="". 13.10 SN SIS P
2 9 4 3
2 2 2 2 2 2 2 2
X X X X
1312, 1 Y Y Xy X g1 XXy
144 81 144 81 16 4 1 5

2) y?2 =x.13.152.13.16 1) y?> =-8x;2) y=x?.13.17 y? = +16x.

(1P (-2
3

4

L

13.18 1) circles (x—2)* +(y+3)* =12; 2) hyperbola
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13.11 —-—=1.

13.14 1) x2 =8y;



(x+05)? (y-0,2)
+
25 0,4

3) parabola (y—2)* =3(x—2); 4) empty set; 5) ellipse =1; 6) a pair of intersecting lines x+y+2=0;x—y=0; 7) parabola

(x—3)% ==2(y+1).

Lesson 14. Second-order surfaces

Classroom assignments

14.1  Determine the appearance of surfaces and their location relative to the coordinate axes:

X2 y2 72 X2 y? 72 X2 y2 72
1 —+—+—=12)—+———=-1;3) — ————=1,;
9 16 25 16 25 100 16 25 100
2 2 2 2 2 2 2 2
X z
4)——y—+—:—1,5)—+y—:22,6)——y———:0;
25 64 49 16 9 16 25
X2 y2 72 W2 72 K2 72
7 ————=-1;8) —+—=-2X;9) —+—=1;
16 25 100 16 25 16 100
x2  z? )
10) —-—=1;11) z° =18x.
16 25

14.2  Find the canonical form for the equation of the second order, using the parallel transport transformation, to determine the appearance of

the surface and its location relative to the new coordinate system:
1) 9x? +4y? +47% —18x+162—11=0; 2) 9x% +4y? 472 —18x 167 -43=0;
3) Ox? —4y? +47° +18x+162+25=0; 4) 9y? + 422 =36x+72;

5) X2 +y2 +6x—4y+12=0;6) y? =4x+16;7) X* +y> +2% +6x—4y+2z-10=0.
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14.3  Plot a body bounded by surfaces:
1) x2+y2 =4,72=0,z=Ly=Xxy= x~/3, located in the first octant;
2) x2+y2:2x;z:0;z:x2+y2;3) z:x2+y2+]; x=0,y=0;z2=0;x=4;y=4,

4) Z=X2—y2;Z=O;X:3;5) X2+y2+22=9; X2+y2=3a.

Homework

14.4  Determine the type of surface and build it:
1) x*+y®+2° —3x+5y—-42=0; 2) x=y*+22%; 3) 2x*—y* +2° =4;
4) 2x%—y? +372=0; 5) 2° =4x; 6) X* +2° =5;

7) X2 +y?+22=27;8) x* +32% -8x+182+34=0; 9) 5x° + y? +10x—6y —102+14 =0;

Answers: 14.1 1) ellipsoid; 2) a bicavitary hyperboloid elongated along the Oz axis; 3) a bicavitary hyperboloid elongated along the Ox axis; 4) a
bicavitary hyperboloid elongated along the Oy axis; 5) an elliptical paraboloid elongated in the positive direction of the Oz axis; 6) a cone elongated
along the Ox axis; 7) a single-cavity hyperboloid elongated along the Ox axis; 8) an elliptical paraboloid elongated in the negative direction of the
Ox axis; 9) an elliptical cylinder forming parallel to the Oy axis; 10) hyperbolic cylinder forming parallel to the Oy axis; 11) a parabolic cylinder
forming parallel to the Oy axis.

14.2 In all tasks, the new coordinate axes OX, OY, OZ are aligned with the old one, the origin of the coordinates of the new coordinate system is at the
point O,

2 y2 2

1) ellipsoid — + —+—=1,0'(1,0;-2);
4 9 9
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X2 yz z2
2) unicavitary hyperboloid — + — ——— =1, elongated along the axis 0Z, O'(1,0;-2)
4 9 9

3) second-order cone 9X 2 —4Y2 +472 =0, elongated along the axis OY, O'(-1,0;-2);
2 52

4) elliptical paraboloid — +—— = X , elongated in the positive direction of the axis OX, O'(-2;0;,0);
4 9

5) elliptical cylinder (circular) X > +Y # =1, forming parallel to the axe 0Z, O'(~3;2,0);
6) parabolic cylinder Y2 =4X forming parallel to the axe 0Z, O'(-4;0;,0);

7) sphere X2 +Y?+7%2 =4, 0'(-32-1).

2 2

3 5 , 2 - .

14.4 1) sphere | x—— | +| y+— | +(z—2)" =—; 2) elliptical paraboloid;
2 2 2

3) single-cavity hyperboloid; 4) conical surface; 5) parabolic cylinder; 6) circular cylinder;

(X—®2+(z+$2 (x+1)2

(y-3)°
+ .

7) sphere X2 + y2 +(z —1)2 =1, 8) elliptic cylinder =1; 9) elliptical paraboloid z =

9 3 2

Lesson 15. Function. Sequence limit and function limit

Classroom assignments

15.1 Construct the feature definition areas:

2X
1) y=\/x2—6x+5 ;2) y=arccos—; 3) y=\/25—x2 +lgsinx; 4) y=2x2‘2.

1+x
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1)

15.2

1) F()=x*+5x2:2) F(x)=x2+%:3) f(X) = 4) f(x)=

15.3

2X+3
1) y=
x-1

15.4 Calculate limits:

Check the next functions for parity or oddness:

2X -1

Plot the graphs for the next functions:

lim (Zx2 +2x—3); 2) lim (x+3)°(x—1);
x—1 X—>-3
2

. . 5xc=-3x+1

5) lim ——: 6) lim 7"
X0 y 41 x>0 3y2 |y _ g
~(2n-1 1+2n°
9) lim - ; 10)
n—>x 5n+7  2+5n°
] n! . x° -8

12) lim : 13) lim :

% (n+1)l-n! X2 4 _ x?

. 2_25  4x®+5x-9
16) lim ; 17) lim ———— -

X5 2 _6x+5 X192 4 3x—5

] X+7 -3 ]
20) lim ; 21) lim
X—2 1— /3_ X n—oo
23) lim (\/nz—Zn—l—\/n2—7n+3j;
Nn—oo
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e*+1

e* -1

:2) y=3x+4—x%|;3) y=-2sin(2x+2);4) y=xsinx.

. 1-3x—x? o 3x+1
3) lim ——; 4) lim ;
x>0 2x2 4+ x-3 X2 2
. X3 +2x . 1-3x2+x°
7) lim : 8) im ——M:
x>® 5_3x% 4 4x4 e 2x+1
_ (n+1P=(n-1y? ~ Yn?+n+2
lim X 11) im ———;
- (n4+1)% +(n—1)? o n+l
o o3x%-27 o 2X°-9x+4
14) im ———: 15) im ——;
x-3 81— x* x>4 2 1 x-20
. VXx+8-3 . \3x+4 -4
18) im ——; 19) im —;
x—1 x—1 X—4 \/__2
1+2+3+...4n n
——J; 22) lim (\/x+2—\/;);
n+2 2 X0
24) lim x3/2(\/x3+1—\/x3—1j;
X—>00



U +1-1 o ¥x-1 . sinx—cosx
25) lim ——— 26) lim ; 27) lim —— "
X016+ x° — 4 -1 /x -1 X% c0S2X
Cx3-3x%+42 X Hx-1-1 . 3N45" (1 3
29) lim ; 30) lim ; 31) lim ;32) lim| ——— :
=1 x2_7x+6 oL Yy n—e 3N _5" U 1-x 1-x°
Homework
15,5 Find the limits for the specified functions:
C2+4x2 43¢ . 7x?+10x+20
1) lim ———; 2) lim : 3)
x—0 3 _7x_10 x>0 3 _10x% -1
. 5" 1 _ 3x?-10x-8
4) lim 5) lim —(1+2+3+...+n); 6) lim —M— 7)
n—o0 5|’l+l +2 n—o0 n2 X—4 16—X2
. x2-25 X244 -2
8) lim : 9) im —; 10)
x—5 [y _1_2 x=0 \[x2 49 -3
1 3
11) lim (x(\/xz +5 —\/x2 +1D; 12) lim ( — J; 13)
X—>c0 x»2( 2 _yx 8_x?
_ X _ A3x+17 —2x+12
14) lim| x—— |;15) lim :
X0 X2 +3X—2 X—>-5 x? +8x+15
1
ANsSwers: 15.1 1) (=0 2]U[5;+0); 2) {——; }; 3) [-5-7)U(0;7);
3
15.2 1) even; (2) neither even nor odd; 3) neither even nor

28)

] Vnsinn
lim
n—=© n4]
n+2)4+(n+1)!
5% (n+3)
. xS —x2+x-1
lim
x>1 %2 _4x+3
C3h-x-1
im ——
Xx—0 X
. X2 +X—6
im —:
Xx>-37-3x -4
4) (—o0;+0).
odd; 4) odd.



1 5 1 2 5 13 1
15.4 1)1;2)0;3) ——;4);5)0;6) —; 7)0; 8) «; 9) 0; 10) 3; 11) 0; 12) 0; 13) — 3; 14) ——; 15) ——; 16) —; 17) —; 18) —; 19)
3 3 6

1 1 5
20) —; 21) ——; 22) 0; 23) —; 24) 1;
3 6 2
1 3 V2
27) ———;28) 0;29) —; 30) —;31)-1;32) - 1.
V2 5 2
1 1 7 3 1
1551) 3; 2) 0, 3 0 49 —; 5 —; 6) ——; 7 - 1, 8 40; 9 —; 100 -
5 2 4 2 3

V2
14) 3;15) ——— .
8

Lesson 16. First and Second Wonderful Limits

Classroom assignments

16.1 Calculate using the first wonderful limit:
. sin5x . X . tg7x . 4x . arctgsx
1) lim ;2) lim ;3) lim ;4) im —— ; 5) lim ;
x=>0 x=0 gin 3x x=0gjn 2x x=0 3arcsin2x x=>0 2y
_ 1-cos6x
6) fim 105X, 7 lim =" 8)
=0 x x>0 ysin 3x
. tgx-—sinx _ sin 3x
10) im ——: 11) im —: 12)
0 3 0 X 14 -2
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. sin? 3x
lim X
x>0 tg2 5x - c0s2X

X2 —7X+6 _

Iim ——;
*>Lsin(2(x-1))

2

11) 2;

13)

7 6

26)

w | N w

40
12) o; 13) —;
3

_ COSX—C0S3X
im —r—«—;
X—)O X2

tg(x +1)

x>-1y2_4x-5



~ \J2+sin3x —+/2—sin3x ~ sinx—cosx J2 —2cosx
14) lim : m_ 7,

; 15) lim ———; 16) li
x>0 5tg 2x s C0S2X s m—4x
4 4
. COS2X—COS° 2X _ 1 (1
17) lim ; 18) lim +/x -sin—: 19) lim| ———ctgx |;
x>0 4xtg3x X0 X X0\ sin x
. 3xarctgbx [
20) lim ———;21) lim | ——x [tgX.
x>0 cosx —cos4x LAY
2
16.2  Find the limits given below using the second wonderful limit:
2x-3
2 _ x+2 IRt
1) lim (L+2x)H*; 2) lim |1+ : 3) lim(x 6) : 4) h'm(zx 1] :
x—0 X—>00 2% -1 x—0o\ X+ 5 x—0o\ 2x +3
1/x 2x+1 )
5) lim (1 - 727 6) Iim(7x+3j ; 7 lim ; 8) lim ((2x+1)(In(3x+1)— In(3x - 2))):
x—0 x—>0\ 9Xx+ 3 x—=o| Gy —3 X—>00
¢ X
. [(6-X) k2 . . X ) . )
9) lim (—j ; 10) lim | — | ; 11) lim ((x—4)(In(2—3x) -In(5-3x))) ;
x—o\ 1 — X X—+0\ 1 4 x X—>0
x2-2x+1) ctg? x
12) lim (1-+sin x)*°%; 13) lim [—] : 14) lim (1+ 3tg? x) :
x—0 x—>0| y2 _ Ay 12 x—0
In(1+7x)

15) lim (14" 16) lim 117) lim (2x -1/,

X x—1

16.3 Calculate the next limits:
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2X

ooe" -1
1) I|m(cosx)1’X 2) lim (1+tgzx/—)1 3) lim (L+ x + x2)Y/sinx; 4) lim :
x—0 x—0 x—0 x=>0 3y
e —e™¥ 2x _
5) lim 6) lim X . 7y i &1
Homework
16.4  Find the limits of the following functions:
sin8x 1-cos4x Xsin4x
1) lim—;2) lim—;3) i I €0s3x — cosx COSX ) lim :
x>0 2arctg3x  *~0 3sin xtg3x 20 11— X—>0 \/1+tg 2X — \/1 tg? 2x
sin| x T
. 1-cos®x . 2x2—7x+3 . 3 . x )
5) Iim ——; 6) im ——; 7) I|m _ 7 8) lim ;
x-0 x2sin x vt tg(2x-1) s 1—2cosx x>0\ 2+X
2 3
1-3x )" 2
9) Iim( j ; 10) lim (x(In(2+x)—In x)); 11) lim (4 —3x ) /(1=x).
x—0 1-2x X—»00 Xx—1
. 2% 1 eX—e In(1+7x
12) lim (cost)“S'”zx; 13) lim : 14) lim ; 15) lim Q
x—0 x>0y x=1 y_1 x=0  sinx

Answers: 16.11) 5, 2) 1/3; 3) 7/2; 4) 2/3; 5 52, 6) 1/2; 7) 6, 8) 925 9 4, 100 1/2; 11) 12
3 J2 V2
12) —5/2; 13) - 1/6; 14) ——; 15) ———; 16) ———; 17) 1/3; 18) 0; 19) 0; 20) 2; 21) 1.
102 2 4

1621) €% 2) €% 3) e 4 e2; 5 e g 23 7 0 8 20 9 el 100 el 11) 1, 12) e



13) e2; 14) e%; 15) e™*: 16) 7: 17) e*.

16.31) e 2:2) Ve ;3)e;4) 2/3:5)2;6) 1/In3; 7) 2Ina.
16.41) 4/3; 2) 8/9; 3) — 8 4 1. 5 oo 6) ——; 7)

13) 3In2; 14) e; 15) 7.
Lesson 17. Compare infinitesimal functions.

Continuity of functions. Break points

Classroom assignments

17.1 Calculate the limits using the relation theorem of two infinitesimal functions:
3 arcsin ——=*— 5y
1) lim cosx—cost; 2) lim In(1 x); 3) lim 12 : e_ -1 ;
x>0 1—CosX x—0 2tg3X x=0 In(1-X) x—05in10x
. 4 2
' _ sin” 4x o In“l++/7x
5) lim SN2, gy iy WXED). gy iy PR gy im M

17.2  Investigate functions on continuity, establish the nature of break points:

X sin(x—2) . 7 X2 —2x+1 1 .

1) f(X)=——;2) f(x)=——2:;3) f(x)=34*";4) f(x)= :5) f(x)=arctg——;

) F00="712) 1(0="2"0213) (0 ) =57 —i5) f()=arctg_~

o <1 SinX, —OO<XSl,
, —0< X<
6) Fx) = X+ 7) f(x)= : 8) F)=1x -3, 1<x<2 9)
X+1 X2+1 X>1.
' x=-1 x=>2

X +1
10) f(x)= )
0) 1) X+1
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Homework

17.3 Calculate the next limits:

sin7x _ 2 2
1) lim In(1_+7x); 2) lim e 1; 3) i 4_X 1 : . X —4 :
x—0  Sin2x x—0 X2 +3X x-larcs in(l—2x) x>2 tg(x% — 3% + 2)
. Jl+sin3x -1 _arcsin’(x—3)
5 lm ——M; 6) lim .
x>0 In(1+tg2x) X3 (e"‘3 —1)2 arctgx
17.4 Investigate the continuity of the function given below; establish the nature of its break points:
4-x2,-2<x<2,
1) f(x)= ztgx ;1 2) f(x) :%; 3) f(x)=¢x-2, 2<x<4, Plotthe graphs for the functions;
Xorex 1+3" ok, x>4
L X+l —o0<x<0,
4) f(x)= €-¢ ;5) f(x)=4qcosx, O0<x<m Plotthe graphs for the functions;
X—mn-1 X>m.
6) f(x) 1-cosx
X)=———.
2x% = x3

1 1 1
Answers: 17.11)3;2) ——;3)-1;4) —;5)3;6) ——; 7) 0; 8) — 21.
6 2 10
17.21) x=1 — break point of the second kind; 2) X=2 - point of removable break, f(2)=1;
1
3) x=+2 — breaks point of the second kind; 4) x =1 — point of removable break, f(l)=—; x=-1 — break point of the second kind; 5) x=3 — first
2

kind of breaking point; 6) x=-1 —first kind of breaking point; 7) the function is continuous at x e R; 8) x =1 —first kind of breaking point; 9) x =2
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— first kind of breaking point; 10) x=—-1 — point of removable break; f(-1)=3.
17.31) 7/2; 2) 7/3; 3) — 2; 4) 4, 5) 3/4; 6) 0.

17.41) x=0 — point of removable break, f(0) =%; X=-2,X= E+1rk (k =0;£L+2 etc.) — break point of the second kind; 2) x=0 - first kind of

2

breaking point; 3) x=4- first kind of breaking point; 4) x=0 — point of removable break, f(0)=2; 5) everywhere continuous; 6) x =0 — point of

1
removable break, f(0)=—; x =2 — break point of the second kind.
4

Lesson 18. Derivative of a function, its geometric and physical meaning

Classroom assignments

18.1 Find the derivations for the next functions:
1) y=7x2; 2) y=x/; :3) y=5(tgx—x).

18.2 Find derived functions:

7 x*+2x+3
1) y:5x4—87\/x—3+—+4; 2) y=x3sin2x; 3) y=———; 4)
5 5
X x° -1
. X
sin4x—cos—
5) y=x (23 +3x2 -2); 7 y-——— 2, 8)
sin 3X + C0SX
— et —2Insin
9) 10) y =—ctg 2Insin—; 11)
4 2
2 1 5[ . 2X ) X
12) y= -—; 13) y =c0s’| sin— |+sin| cos— |; 14)
2x-1 X 3 4
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y=(x5+3x—7)4;

_ -x2 | 1.
y=¢€¢ = -l0gz—;
X

y =arctdv/x +2);

yzz—&/mx.



2 1
15) y =arcsin—+arccos—; 16) y =log,In x.
X 2

2
18.3  Solve the equation f'(x)—— f(x)=0,if f(x)=x3Inx.
X

18.4  Solve the next inequalitiy: f'(X)+¢'(x)>0 where f(x)=2x>+12x?, ¢(x)=9x>+72x.

18.5 Calculate the values of the derivatives of the specified functions at the specified values of the independent variable:

D) F(X) =R +3 + 246 F(1)=2 2) F(X)= e sin s £/(3)="

X+1 3 X 6
. T 2C0SX T
3) f(x)=sin8xcos4x; f’(—J=? 4) f(x)= ; f’(—}:?
3 1+sinx 2
arctgx 2 X
5) f(x)= f'(1)=" 6) f(x)=4e™™ -arcsin—; f'(0)="
@ 2
7) 1(x)=372; £(2)=2 8) f(x)=1In L £/(2)="?
1+4x

9) f(x)=5(x2—x)~coszx; f'(0)=?  10) f(x)=i x2-1+¥x; f'(1)="
2

11) f(x)= 2X;4; f’[ﬁlz?

sin“ x 2

18.6  Write the equations of tangent and normal to the graph of

at the point M (1,5).
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5 y=

18.7 Write the equations of tangent and normal to the graph of the function y =tgx
o : 4n
at the point with abscissa Xy = —.
18.8 A body with a mass of 7 moves in a straight line according to the law y =12 +t+4. Determine the kinetic energy of the body at a point
intime t=3.
18.9  The radius of the ball changes at a speed of 6 cm / s. At what speed the volume and surface of the ball change?
18.10 Find the current strength in the conductor, if the charge passing through the cross-section of the conductor changes according to the law
g=2t+et (Cl).
18.11 A material point moves along a circle so that the angular displacement ¢ changes according to the law ¢ = 6,5+ 7t +3,5t% +2t° (rad).
Find the angular velocity of the material point to the point at time t =2s from the beginning of the motion.
Homework
18.12 Find derived functions:
3
C0S3X X~ -ctg2x
1) y=5e*-Jx; 2)y= : 3) y=x%arcsin8x; 4) y=—g;
tgv/x Vx+1
, X 3 4
SN2 ) y=Slogysin—; ) y=——-—; 8 y=hi(8x-4);
7 2X—7 X

2 5/,,3

1 VX—X a X
9) y=arccos—; 10) y=arctgyxvxvJx ; 11) y= , 12)y= +—

Jx e X ‘Q(/X_z b
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18.13 Make up the equations of tangent and normal to

at the point with abscissa Xp = —1.

the

graph

of

the

function

18.14 Calculate the values of the derivatives of the specified functions at the specified values of the independent variable:

1) f(x)=Vx®+5+ L , (2)="; 2) f(x)=3—i+sin9x; f'(n)=2;

2x -1 3 5x
1 . T tg X T
3) f(x)=—sin6x-cos3x; f'| — [=?; 4) f(x)=——x; f'|—|=7;
6 3 X 4
2
1
5) f(x)=1In , f(2)="; 6) f(x)=arccosvl—2x +v2x—4x?; f’[—}:?;
1+4~4X 2

1+x
7) f(x)=arctng; f'(0)="
1-x

1
Answers: 18.3 x=—.18.4 X € (—o0;—4]U[-3;+x).
e

1851) f'(1)=7;2) f’(3)=3;3) f'(ﬁjzs 4) f'(EJz—l;S) f'(1)=3—3—“;
3 3 2 2 8

) 10)=2:7) F1(2)=———s8) 1(2)=—:9) 1(0)=-5;10) ()~ 11) f'[ij
18 18 12 2

49
186 Y =2X+3; X+2y—-11=0.18.7 y=3x—7. 188 K =— . 18.9 V' =247R?, s' = 48nR .
2

18.10 1 =2-3e™".18.11 o =45 paelc. 18.13 2x—y+3=0; x+2y—-1=0.
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B 2
18.14 Y F(2)=-2. 2 fi(r) = 222 3) f{i}_e,
9 1512 3
5) £'(2)= 32 +1 : 6) f’(ijzo; 7) £'(0)=-1.
42 +1 2

Lesson 19. A derivative of a function. Logarithmic derivative

Classroom assignments

19.1 Find derived functions:
1
1) y:\/x+2\/x+3\/; +shx; 2) y=1log,e; 3) y=—"—,
cos"(m+1)x
ctg4x 1
5) y=e2*ch5x; 6) y=arcctg(thx); 7) y = J ;8) y=5sh—.
cth3x X
19.2  Using pre-logarithm, to find derived functions:
B (x—3)?(2x—1)° 2 y 3\/(4x7)2(12x x2)8
y= ; = ;
(4x +1)3 (2-3x)
4) y= (arcsin3x)& ; 5) y = (tg 8x)"9 ; 6) y= X ;

2
8) y=(log, x)*'%; 9) y =arctg2x-(1+ 4x)&; 10) y = (th6x)® .
Homework
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7)

4)

4)

y =log, In"mx;

8

y= (ZX)Sin x/3.

1
COS—

X

Jarcsin 5x



19.3  Find derived functions:

J 1
1) y =a"®* . 3/cosx : 2) y = arcsin(—]; 3) y = X~ ta6x. 4) y= (accthx)'”3X; 5)
chx
- i =X 8) y=X"9)y=|— ;10) y=(log,7)".
5\/(3_)()4 413 53%_8 ~ X

19.4  Calculate the values of the derivatives of the specified functions at the specified values of the independent variable:

1) f(x)=(3x)x4; f'1)=22) f(x):(iz] L £'(1)=2 3) f(x)=(cosx)!'%; f'(2n)=2

X

4) f(x)=x"% £/(1)=2 5) f(x)=(sinx)9%; f'(ﬁ
2

j:? 6) f(x)=(arcsinx)?*; f'(i]sz

2

2 4
7 £ ()= (x+ 17 11@2)=28)y = STy g gyy o XTI
(x—5)° (7x—5)°

Answers: 19.4 1) f'(1)=12In3+3; 2) f'(1)=—2cosl; 3) f'(2n)=0; 4)

5) f’(ﬁjzo; 6) f'(i}nln“-nmfﬁ; 7) F(2)=1-In3: 8)

2 2 3 3 3 2
9) f'(o):—i.
625

Lesson 20. Differentiation of functions specified parametrically and implicitly. Function differential

Classroom assignments
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20.1 To find derived functions specified parametrically:

t

2
1) x=t2+2,y=%t3—1; 2) x=$,y:(—j ; 3) x=a(p-sing),y=a(l—cos) ; 4) x=Int,y=t>—1; 5) x=arccosvt,y =Vt —t? ;

t+1
6) x=arctgt,y =In(L+t2); 7) x=acos’t,y=asin®t;  8) x=tgt,y=sin2t+2cos 2t .
20.2  Find the derivative y; at the specified point:

2
1) x=etcost,y:etsint;t:g. 2) g a3t

1+t? i 1+t2’
20.3  Find derived functions specified implicitly:

1) e* +2x%y? —e¥ =0; 2) 2ylny=x; 3) x—y =arcsin x—arcsin y ; 4) 2% 4+2Y =2+
5) arctgy =y —x?; 6) sin(xy)+cos(xy)=0; 7) x?/3+y?/3=a%3; 8) e*siny—eY cosx=0.
20.4 Find vy, atthe point x=1, if x®-2x?y? +5x+y-5=0,y(1) =1.
205 Find vy, atthe point (0,1),if ¥ +xy=e.
20.6  Find the next function differentials:
1) y=xtg®x; 2) y=,farctgx + (arcsinx)?;  3) y=In(x+va+x2);  4) yP+y—x®=1.
20.7  Find the approximate value of the function y(x) = e~ at x= 1,2.
20.8  Calculate approximately:
1) arcsin0,05; 2) In12; 3) 417 ; 4) tg44°56 .

Homework

20.9  Find the derivative vy :
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t+1 tt;l; 2) x=e'sint, y =€’ cost.

1) x=—S,y=
) Y

1+t;nt Y= 3+flnt , satisfies the ratio yy’ =2x(y")? +1.

20.10 Make sure that the function specified parametrically by the equations x =

20.11 Find the derivatives for the functions specified implicitly:
1) x3+y® —3axy=0; 2) sin(xy) +cos(xy) = tg(X + ) .

20.12 Make sure that the function y defined by the equation xy —Iny =1, satisfies the ratio y*+(xy—1)-y’ =0.
20.13 Find the function differentials:

1) y=xarcsinx+v1-x2 -3; 2) &/ =x+y.
2
20.14 Calculate approximately: 1) sin29°; 2) w.
(2,037)? +5
20.15 How much approximately will the area of the radius circle change? R =3 cm, if the radius will increase by 0,1 cm?
t 2t sing [0) 9
Answers: 20.1 1) — 2) - 3) =ctg—; 4) 2t°; 5) 2t—1; 6) 2t; 7) —tot ;
2 t+1 1-cose 2

8) 2(cos2t—2sin2t)cos’t .

[ .2 [ o2
1 4 eX +4xy? 1 ( 1-x —1j 1-y
202 1 =(8+f; 2 = 28 1 . o = . 3 :
2 3 e —4x%y 2(In'y +1) ( 1-y? —1)\/1—x2
2X 2%y 2x(L+ y? e¥sinx+e*sin
4) ) ( y);6)—1;7)—~'5\/Z;8) r
2%ty Y y? X X e cosx—e* cosy
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4
20.4 —. 20.5
3

dx 2xdx
3) . 4) .20.7
Vaix? 5y4+1
2
20.11 1) =X
yZ —ax

-e . 20.6. 1) tg°x| tgx + dx ;
cos? X
1,2.20.8 1) 0,05; 3) 0,2; 4) 2,02. 20.9
2 _ ycos% (X + y)(cos (xy) —sin(xy)) —1 20.13

xcos? (X + y)(cos(xy) —sin(xy)) -1 '

1) 0,485; 2) 0,355. 20.15

Lesson 21. Derivatives and differentials of higher orders

Classroom assignments

21.1  Find the second order derivatives from the following functions:

1) y=cosx;

4) y:lxzx/l—xz +z\/1—x2 +Xxarcsinx;
3 3

2) y=arctgx’;

3) y=1log, -2 ;

5 y= (1+ xz)arctgx ;

6) yzeﬁ.

1 1 2arcsinx
2) . + X:
2 arctgt 1+x% V1-x2
1)-1; 2) 1=tet.
1+1tgt
1) arcsinxdx; 2) ax .
e¥ -1

21.2  Show that the functiony = olezx + cze3x for any constants ¢; and C, satisfies the equation y"—-5y'+6y=0.

21.3  Find the second order derivatives of functions specified implicitly:

1) y=1+xe’;

5) x+y=e7;

2) X +y* =3xy;

6) y =sin(x+y).

3) arctgy =y —x;

4) y=x+Iny;

21.4  Find the second order derivatives of functions specified parametrically:

1) x:t2+2,y:%t3—1;

2) x=arcsint,y =v1—t?
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3) x=acos’t,y=asin’t; 4) x=Int,y=t*>-1;
5) x=a(p-sing), y =a(l-coso): 6) x=1+e™, y=at+e ™.
21.5  Find the differentials of the first, second and 3rd orders of the function y = (2x—3)3.
21.6  Find the second order function differentials:
1) y=eX; 2) xy+y?=1.

In x
21.7  Find the 3rd order differential of the function y = —.

X

21.8  Find approximate value }/3L to two decimal places.

Homework

21.9  Find derivatives of the second order for the following functions:

1) y=+v1-x?arcsinx; 2) y=|n(x+\/1+x2);

1 2
3) y=——xsin3x——=cos3x; 4) y= .
9 27 1+x°

21.10 Find y(™(x) for the function y=e,

2
21.11 Find _y for the next functions:

dx?
X+ . 1 .
1) Y =xy; 2) x=——,y=tgt;
cost
3) x*+y*+xy—4=0; 4) x =arctgt, y=|n(1+t2).
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21.12 Calculate the value of the second-order derivative of the function y given by the equation x? + 2y2 —Xy+X+Yy=4 at the point M (L1).

21.13 Prove that the function y =e** +2e™ satisfies the equation y” —13y’—12y =0 . Write for this function d°y .

21.14 Calculate approximate function y = Yx? —5x+12 for the value x =1,3 at two decimal places.

2-6x"
Answers: 21.1 1) —2C0S2X; 2) ; 3)
(1+ x4)2
Vx \/_ 2y
e X — 3—
5) + 2arctgx; 6) # . 21.3 1) i;
1+x? 4xJ/x (2-yy
4(X + t2+1
no Y g Y g Y g .2
(y-1) (x+y+1)° (1-cos(x+Yy))’ 4t
5) -————:6) 26 g2 215 6(2x —3)dx; 24(2x —3)dx?; 48dx°.
a(l-cosg)?
2dx?
21.6 1) e (ax? —2)?; 2) el 217
(x+2y)°
H 2
219 1) _aesinx+xvizx®. o X 3 XSin3x;
Ja-x?)? J@+x?)3
11 1y 0 YEDODH. g g 2
x“(y-1) (x+2y)®

2113 (646 — 267 o3, 21.14 1,93,

232

2 x4l
32 (x2-1f

—2xy
y2-x

—V1-t?; 3)

2)

4)

21.8

21.10

4)

2N1-%2 ;

o+ y?)

42

1,99.

(-)"e7".



Lesson 22. Lopital-Bernoulli rule

Classroom assignments

22.1 Calculate the next limits:

_ sin2x—sin3x X8 . eX—e*-2x X3 —4x®+5x-2
1) lim —— 2) lim —; 3) lim ——; 4) lim 3 ; ;
x>0 arcsinx X—>0 3X x>0 x—sinx X1 x° _Bx*+7x-3
. x* 2oy _ In(x—a)-cosx _ 5x%+x-1
5) lim ; 6) lim ; 7) lim ; 8) im ——
x>0 2 1 2C0oSX — 2 x>1  nx X—>a+0 In(eX —ea) X1 y2 4 Ay +2
9) i 7 — 2arctgx 10) i In x 1) i tgx—x 12) i ctgx
im ——; im —— im : im ——:
xoio  g3/X _q x=01 4 2Insin x =0 x _sin x x=>+0 |n 2x
) 3 . 2 1/x2 . X 1 . 1
13) lim x-sin—; 14) lim x“-e" " ; 15) im| ————|; 16) lim| ctgx—— |;
X—>00 X x—0 > x—-1 Inx x—0 X
; X . X s . ) X
17) lim (n—x)-tg—; 18) lim | —— ; 19) lim sin(x—1)-tg—;
X—>T 2 X—mn/2 ctgx  2cosx x—1 2
: 1 1 . sinx o 3/(L+Inx) ; x /X
20) lim — 21) lim x> 7"; 22) lim x ; 23) lim (x+10 )1 ;

x>0 In(x+\/1+x2) In(1+ x) 1 X0 x—0 X—>a0 ’
/
24) lim (cos2x)'; 25) lim (6% + xJ; 26) lim (ctgx"™; 27) lim (tgx?*;
x—0 x—0 x—0 X—n/2

1 X
28) lim £1+—J :29) lim (arcsinx)'9%; 30) lim (m—2x)™*.
2 0 X—n/2

X—>0 X X—>
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Homework

22.2  Calculate the next limits:

- Xx+2Inx _ x3 ~ Insin5x o33 ex+l _ x—arctgx
1) lim ——; 2) lim ; 3) lim ; 4) im —; 5) lim ——;
X—>00 X Xx—0 X — Sin X Xx—0 In Sin 2X X—>—00 e_x x—0 X3
2% _3X e—3x _ esinx 1 1 1 1
6) lim ———; 7) Iim ——: 8) lim -——; 9) im| —-— ;
X=0 yy1— x2 X0 X x>0 arctgx  x x>0 2x2  2xtgx
. 1 1 ) . . /x
10) lim| —-———1; 11) lim x-ctgnx ; 12) lim In x-In(x-1); 13) lim (In x)"*;
=1\ In x x—1 x—0 x—1 X—>00
(1 _ X _ (sinx 2
14) lim| —| ;15) lim x"®2:16) lim| —— | .
X—=0\ y x—0 x=>0  x
Answers: 22.11) - 1, 2) 0, 3) 2; 4 12; 5 12; 6) In2-1; 7) cosa; 8) 5 9 2/3; 100 1/2; 11) 2;
1
12) o«; 13) 3; 14) + oo; 15) 1/2; 16) 0; 17) 2; 18) - 1; 190 -2/=x; 200 —-—; 21) 1, 22) e3; 23) 10;
2
24) e72; 25) e2; 26) e71; 27) 1; 28) 1; 29) 1: 30) 1.
2
2221) 1, 2) 6, 3) 1, 4 0, 5 13 6 Ih—; 7 - 4, 8 0, 9 1/6; 100 1/2; 11) U=, 12) 0; 13) 1;

3

14) 1; 15) e; 16) e V¢,

Lesson 23. Taylor formula

Classroom assignments
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23.1 Decompose the polynomial x* —2x% +13x+9 to the powers of the two-member x+2.

23.2 Decompose the polynomial X2 +3x2—2x+4 to the powers of the two-member x+1.

23.3  For the polynomial x* + 4x2 — x+3 write the second-order Taylor formula at the point X; =1. Record the residual term in the Lagrange
form.

23.4  Write the 3rd order Taylor formula for the function f(x)=10" at the point X =0.
X
23.5  Write the 3rd order Taylor formula for the function f(x)=—— at the point X, =2.
x-1

23.6  Write the 3rd order Taylor formula for the function f(x)=tgx at trhe point X, =0.
3

23.7  Derive an approximate formula sinx ~ x—— and evaluate its accuracy for |x| < 0,05 .
6

23.8  Derive approximate formulas and estimate their error at |x| <1:

1 1 1 1
1) VI+ X 21+ =x-=x%;2) 1+ x 1+ Zx-=x2.
2 8 3 9
1 253
23.9  Check that when calculating the values of the function e*with0 < x < — an approximate formulae* ~ 1+ x +—+— the permissible
2 2 6

error is less than 0.01. Taking advantage of this, to find %2 with three correct numbers.
23.10 Calculate accurately cos10° up to 107,
23.11 Calculate accurately up to 1073;
1) ¥/33 : 2) In1,05.

23.12 Find the next limits using the MacLoren formula decomposition with a residual term at the Peano form:
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1 i V1+X —v1-X 2) lim 1-cosx
iIm ; ;
o xe® 4 xe* —2e% 4 2e* I+ x) - x+1+x
3) I|m0 ( )3 ; 4) lim ; .
X—> X _1 x—0 X
Homework

23.13 Decompose the polynomial x* —5x3 + X% —3x+4 to the powers of the two-member x—4.

1
23.14 Write a 3rd order Taylor formula for the function f(x)=—— at the point X, =1.
X

23.15 Write a 3rd order Taylor formula for the function y =arcsinx at the point Xy =0 .

1
23.16 Write a 3rd order Taylor formula for the function y =— at the point Xy = —1.
X

23.17 Write a nth-order McLaurin formula for the function f(x)=xe*, Xy =0.
23.18 Calculate approximate values with specified precision A:
1) sin1°, A=107"*;2) Ve, A=10"%; 3) 1027, A =107; 4) cos5°, A=10"".

23.19 Find the next limits using the MacLoren formula decomposition with a residual term in the Peano form:

_sinx—xX . 1-cosx ) Xsin X (1 1
1) lim ;2) Iim ——; 3) lim ;4) lim| —— .
x>0 x2sjn x Xx20X _1_x  x203/143x —/1+2x x>0

Answers: 23.1 f(x)=-9—-11(x+2)+22(x+2)* —=8(x+2)* +(x+2)*;

23.2 f(x)=(x+1)> =5(x+1)+8; 23.3 f(x)=7+11(x—1)+10(x—1)* +4(1+6(x -1} x—1)*;
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) In?10 , %0 , 10%In*10 ,
23.4 10" =1+In10-x+ XS+ X~ + x*,0<0<1;
2 3 4

SR —(x=2)+(x=2)? = (x— 3+ﬂ
25~ =2-(-2)+ (x- 2P -(x-2) P

,0<0<«1;

3 3

1+2sin%0x  x

1 X
236 tgx=x+——-—,0<0<1; 237 A<3-107° ;238 1) — —— 0<0<1;

cos*ox 3 16 (1+6x)'?

5 x3
2) ————,0<0<1;23.91,221; 23.10 0,9848; 23.11 1) 2,012; 2) 0,049; 23.12

81 (1+6x)"

2) 1/2; 3) 1/6; 4) — 1; 23.13 f(x)=-56+21(x—4)+37(x—4)? +11(x—4)* +(x—4)*;

1 1.3 1.3.5 1.3.5.7 x—1)*
23.14 f(x)=1-—(x-1)+ (x=1) - ——(x-1>+ ' )
2 22.21 2%.3 2441 (1+0(x-1))°?
2315 x> x* 90x+60%° 061
Dy=X+—+—-———-=-5,0<0<]];
6 4 [-0ne)"”

(X +1)n+1

,0<0<1;
(—1+0(x+1)"*2

2316 y = —1-(x+1)— (x+1)° —...— (x+1)" +(-2)"*

) X3 xn Xn+1

23.17 f(X)=X+X"+—+...+ +
2! (n—1)1 (n+1)!

23.18 1) 0,0175; 2) 1,648; 3) 2,0006; 4) 0,99619; 23.19 1) — 1/6; 2) 1: 3) — 2; 4) 1/2.

(Ox+n+1)e™ 0<0<1;
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1)

1) y=4x3—9x2+6x;2) y=e3x—3X+2;3) y=

Lesson 24. Monotony of functions. Extremum. The highest and lowest values for the functions. Convexity and concavity of function

graphs

Classroom assignments

24.1  Find the intervals of increase, decrease and extremum point of functions:

y=15—x2 —2x; 2) y=2x>—6x% —18x+7;
2_
4) y=xv1-x*; 5) y=22-1 6) y=x%";
X

eX X+1
9) y=—-,;10) y=In
X+1 X+ 2

24.2  Find extreme functions using a second order derivative:

1+ x2

4) y=xIn?x;5) y=x?(@—x)%;6) y=x+v1-x.

24.3  Determine the highest and lowest values of functions in the specified intervals:

1) y=x*—2x2+5,[-2,0]; 2) y=x+2Vx, [0:4];3) y=¥x+1-%/x-1, [0;1];

2

1-x
4) y =arctg—, [01];5) y=
1+x x“+1

,[=2,1]; 6) y=xInx—x; [L/e;e].

24.4  Find the intervals of convexity, concavity and inflection points of graph functions:

238

7)

3)

4

X

8)

2x3+Ex2—6x+g ;
2 4

y=Yx2-2x



1 x+1)?
1) y= In(1+ xz); 2) y _ g B +ax. 3) y=X? = 4) y (—J ; 5) y=x*—2x%+3;
X X —

4 2

3" +1 2x° -1
6) y= ;7)) Y= 1 :8) y=x%-e7%;9) y=x\/1—x2 ; 10) y=3\/x2—2x.

X3 X

245 ltis required to make a box with a lid, the volume of which would be equal to 72 cm?, and the sides of the base would be treated as 1: 2.
What should be the dimensions of all sides so that the full surface of the box is the smallest?
24.6  Find the ratio between the radius R and the height H of the cylinder having the smallest total surface at a given volume.

24.7  Find the height of the cylinder of the largest volume that can be entered into the ball radius R.
Homework

24.8  Find the intervals of increase, decrease and extremum point for the next functions:

3
X
1) y=Inx-arctgx;2) y=—;3) y=(x—1)*; 4) y=x>—6x*+16.
x-1
a2
24.9  Find the extremum of the function y = X+—, a >0 using the second derivative.
X

24.10 Find the inflection point of the graphs for the next functions:

2x-1 4x3
;2) y=xarctgx;3) y=
(x—1)2 1-x

X212 .
1) y= si4) y=e (Gaussian curve).

24.11 Find the largest and smallest function values in intervals (or in the entire scope of the definition):

1)y=1_x+X2 [QlLZ)yzxéj%:3)y=hﬂ4—Xﬁ,P$ﬂ;® y =x+2Vx, [0:4]

)
1+ X — x>
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24.12 From three boards of the same width, a chute is formed to supply water. At what angle o inclination of the side walls to the bottom of the

gutter will the cross-sectional area be the greatest?

Answers: 24.11) (-o0;—1) — increases; (—1;+0) — decreases; Yma = Y(—=1)=16;

2) (—o0;—1)U(3;+0) — increases; (~1;3) — decreases; Ymin = Y(3) = —47; Ymax = Y(-1)=13;

3) (,2)U(3;+0) — increases; (—01)U(2;3) — decreases; Ymin = Y1) = Y(8)=0; ymax = ¥(2)=—;

4) (—L—l/\/E)U (1/\/5;1) — decreases; (—1/\/5;1/ \/E) —increases; Ymin = y(—l/\/E): 12 Yoax = y(l/ﬁ): 1/2;
5) (—o0;-1)U(0.1) — increases; (—1,0)U(L+0) — decreases; Yma = Y(-1)=y(1)=1;

6) (0;2) — increases; (—0;0)U(2;00) — decreases; Ypin = Y(0)=0; Yyax = ¥(2) = 4/€?;

7) (&;+0) —increases; (0;)U(Le) — decreases; Ymin = Y(€)=¢€;

8) (L+0) — increases; (—0;1) — decreases; Ymin = Y(1)=-1;

9) (0;+0) — increases; (—o0;—1)U(-10) — decreases; Ymin = Y(0)=1;

10) (—o0;-2)U(=L+0) — increases; (—2;—1) — decreases; there are no extremes.

1) 5
24.21) Yoo = y(z] = Yin = y1)=1;2) Ymin = ¥(0)=3;

3) Ymax = YO) =L Ymin = Y(=1)==1; 4) Yy = y(e_z): 4/e%; Ymin = Y(1)=0;
) 3 5
5) Ymax = y(ij = Y = ¥(0)= Y(2) = 0; 6) Yoo = y(—] ==
2 16 4

24.31) Yy =Y(-2)=13 Vi, = Y(-1)=4; 2) Yiign. = Y(4)=8; Yo, = ¥(0)=0;
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3) Yhigh. = y(O) =2, Yiow. = y(l) = E/E; 4) Yhigh. = y(O) :%; Yiow. = y(l) =0;

5) Yign. =¥ (=2)= 1 Yiow =Y(0) =1, 6) Yiugn, = ¥(8) =0; Yoo, = ¥(1) =-1;

= U'IlOO

24.41) (-o0;-1)U(L+0) — the graph is convex; (~11) — the graph is concave; (=1 1n2), (;In 2) — there are no inflection points;

1 . 1 . 1
2) (O;—j — the graph is convex; (- oo;O)U(—;+ooJ — the graph is concave; (0;1), (—
2 2

;1J — there are no inflection points;
2

3) (—0;0)U(0;+00) — the graph is concave; there are no inflection points;

1
4) (- o0;-2) —the graph is convex; (—21)U(L+0) — the graph is concave; (— 2;—j — inflection point;
9

J3 J3 V3 _ f 22) v3 22y
5) oo—— ——;+oo | —the graph is concave; | —-——;—— | — the graph is convex; | ———;— |,| —;— | — inflection point;
3 3 3 3 9 3 9
6) (—0;0) —the graph is convex; (0;+) — the graph is concave; there are no inflection points;
5 5 5 : 5 21 5 21 ) . .
7 |- — ;400 | —the graph is concave; | —_|—;0 |U| 0; [— | —the graph is convex; | — |—;— |U| .|—;— | — — inflection point;
3 3 3 3 25 3 25

8) |—x;2— \/_) (2+\/_+oo)—thegraph IS concave; (2 \/_2+\/_)—thegraph IS convex; (2+\/_(2+\/—)2e_2 ‘FJ [2 \/_ 2 \/_)Ze_Z“F)

inflection point;
9) (—=10) — the graph is concave; (0;1) — the graph is convex; (0;0) — inflection point;
10) (—0;0)U(2;+90) — the graph is convex; (0;2) — the graph is concave; (0;0); (2;0) — inflection points.

2R3
2453,6 and 4 cm; 24.6 H=2R; 247 H =—; 24.8 1) increases throughout the definition area;
3
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3 3 _ 3) 27
2) (—0;1)U| L,— | — decreases; | —;+oo | —increases; Ymin =Yl — |=—;
2 2 2) 4

3) (—;0) — decreases; (0;+e0) — increases; Ymin = ¥(0)=—1;
4) (-0;0)U(4;+0) — increases; (0;4) — decreases; Ymax = ¥(0)=16, Ypin = ¥(4)=-16;

24.9 Ymax = Y(—a) =-2a; Yin = Y(@) = 2a;

24.10 1) (—i;—gj ; 2) no inflection points; 3) (0;0), L—i/IiJ  4) (—]_;e‘llz) (J.;e‘”z).
2 3

2 9
27
2411 1)1and 3/5;2) 1/+/e and —1/~e;3) In4 and In3; 4) 8and 0; 24.12 o= — .

3
Lesson 25. Asymptotes. Plotting graphs of functions

Classroom assignments

25.1 Find asymptotes the next function graph:

X2 —4x+5 e x* In x
1) y = — . 2) y=—": 3) y=——: 4) y=—; 5) y = 3x+arctgsx;
X—2 X+1 X +1 X
2 2
X +2 X
6) y= 1 7) y=x+sinx;8) y=(x—2)V*;9) y= ;10) y=x%+2/x.
X2—9 VX2—1

25.2  Conduct a full study and sketch the graphs for the next functions:

2x% -1
1) y= 12) y=x%;3) y=xV1-x* ;4) y=Ux*~2x ;5) y =xInx;

X4
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X2 43

_ X X
) y= 18) y=(x—1e";9) y=——;10) y=x*-6x*+16.

6) y= ,
x% +1 (1+x)° 1-x

Homework

25.3  Find the horizontal and vertical asymptotes of each curve
x2

ny=

1 x> 2+4x°
2;2)y=X|n e+ — ,3)y:—’4)y: )

1-4x X 2(1+x)? x?
25.4  Investigate functions and sketch its graphs:

3
X

Dy=—7:2) y=xe"*;3) y=|n(1—x2); 4) y=e2>*
1-x

Answers: 251 1) x=2,y=x-2;2) x=-1y=0 (left); 3) x=-L y=x;4) x=0,y=0;
T . T
5) y=3x+— (right), y=3x—— (left); 6) x=3,x=-3,y=1;7) no;
2 2
8) x=0;y=x-3;9) x=21, y=+x; 10) x=0.
1 1 1
25.31) x=+—;y=1;2) x=-1/g;y=x+—;3) x=-1L, y=—x-1;4) x=0;,y=X.
2 2

e

Lesson 26. Curvature of the curve

Classroom assignments

26.1  Find the curvature and radius of curvature of the line y = x? + 2 at the point (L3).

26.2  Calculate the curvature of the line y = Yx +2 at any point.
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26.3  Calculate the curvature of the ellipse x?+9y? =9 at its vertices.
26.4  Find the curvature and radius of curvature of the line Xy =4 at the point (2;2).
26.5 Find the curvature and radius of curvature of the curve x?+xy +y? =3 at the point M (L1).

26.6  Calculate the curvature of the curve r = 2(1—Cc0S®) at the point with the given value ¢ =7

t* 2
26.7 Calculate the curvature of the curve x =t%, y =t—— at the point (1; —J (t=1).
3 3

Homework

26.8  Find the curvature and radius of curvature for the line y = \/x_3 at the point M(4;8).
26.9

X —X

e"+e
Calculate the curvature of the line ¥ = T at the point with given value x=0.
«2 2
26.10 Calculate the curvature of the hyperbola — ——— =1 at the point with given values x=2,y=0.
4 9

26.11 Find the curvature of the curve x> +y?—xy =1 at the point M (L1).
_ t2 t3 _ 11
26.12 Calculate the curvature of the line X=—, y=— at the point M| —;—
2 3 2 3

26.13 Calculate the curvature of the line y = 2cost, y =3sint at any point.

Jazn.
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5V5

1 1
Answers: 261 K =—— i R="":262 K=——/(0x*3+1] ;263 K=3 K="
55 63/x 9
J2 1 3
26.4 K="2 265 K=——:R=3J2; 26.6 K=": 26.7
4 V2 8
. 2 2 \3/2
3 8010 9 3 1 (asin?t+9cos?t)
26.8 K = ‘R= 1269 K=1;26.10 K = ;26,11 K =——; 2612 K =——; 26.13 K = .
80410 3 2 J2 232 6
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11 a) 2X1+X2 _X3+X4 23,
3X1+X4 :4

Xl_XZ_X3_X4:1’

2X1 + X3 +2X4 :5,

12 a) X2 _X3 +X4 =0,

13. a)

1.4. a)

2Xl + Xz +3X3 :5

X2 + 2X3 +3X4 = 2,

Xl—Xz_X3_2X4:O,

X+ Xo + X4 =—1

2X2+X3+4X4 =0,
Xl_X3+X4:2,
X +2Xy +5%4 =1

Pa3fgen KOHTponsa 3HaHUN
SECTION OF KNOWLEDGE CONTROL

FOR THE EDUCATIONAL DISCIPLINE “MATHEMATICS. PART I”

TYPICAL CALCULATION No. 1
ELEMENTS OF LINEAR ALGEBRA AND ANALYTICAL GEOMETRY

Task 1
Investigate the system of equations and solve it in case of compatibility.

2% —3Xy — %3 =0,
X+ Xy + X3 =1,

3% —2Xy =1,

X —2Xy —2X3 =-1

b)

2% — 3%y + X3 =0,
X+ Xo + X3 =1,
4%, +5Xy — X3 = -1,
X + 3%y + X3 =3.

b)

Xl_X2+2X3:1,
3% + Xy + X3 =2,
b) 1 2 3

X+ X + X3 =3,
X — Xy + %3 =0.

3X1+4X2_X3=O,
b) X1+2X2+X3:0,
2% — Xp + X3 = 0.
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1.5.

1.6.

1.7.

1.8.

1.9.

1.10. a)

a)

4X2 + 2X3 - 3X4 B O,
3X1 _3X2 + X4 = 3;

3% + Xy +2X3 — 2X, = 3.

Xl_2X2 +3X3 :3,
2X1+X3—X4 =1,

Xl+2X2 _2X3 _X4 :_2

4X1 - 2X3 + 5X4 = 0,
3X1+X3_X4 =O,
Xl _3)(3 +6X4 = O

Xl_X3+X4 =0,
2X1+X3_2X4:0.
3% +2Xy — X4 =0.

Xl_X2+X3+X4=O,
2X1+X2+X3_X4:O,
X+ 2Xy —2%4 = 0.

X1+X2_X4 =O,
Xo +.X3+X4=0,
X3_4X4:0.

b)

b)

b)

b)

b)

b)

3X1+X2+X3:4,
X1+X3_2X4=2,
2X1+X2+2X4:2.

2% — X3 —2X%4 =0,
X +2Xy — X3 =1,
Xo + X4 =2,
3% + 3%y —2X3 = 0.

X+ Xg—=Xg =7,

2% + Xy + X4 =6,
X; — X9 + X3 =5,
4% +2X%3 =0.

2% + 2%y + X3 =5,
Xg — X3+ X4 =0,
X + 2%y + X4 =1,
Xo + X3 —x4 =0.

3% —2Xy — X3 =1,
X + X5 + X3 =0,
SXy + X3 =7,

X, +3Xy =6.

X2+X3—X4=_2,
X + Xy — X3 =4,
2X1+.X'2+X4=3,
3% + 3%, =0.

Task 2
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2.1. Calculate (a,b), where a=23m, — 2, b = My + 4m,; m,, M, — unit vectors, the angle between which is equal to %.

2.2. Find the projection of the vector & =4i —3] +4k onto the direction of the vector b =2i +2] +k .

2.3.Find (a,b), [}, p|, if a=27+]-K, b=]+2k.

2.4. The vector ¢, collinear to the vector a =5i —2k , forms an acute angle with the Oz axis. Find the coordinates of the vector ¢, if c| =329 .
2.5. Find (2a-36, a-b), if a]=+/2.[p|=2, (a,AB):%.

2.6. Find (&,b), [4] ‘5‘ if 4=2m+3—p; b=m—4p, The vectors m, i, B forms an orthogonal basis and | M| =2, [i|=3, |p|=4.

2.7. Find the length of the vector a=3m+4f , if [ii=[i]=1 (™" ﬁ)=§.

2.8. Find a vector b , collinear to the vector a=2i + j—k and satisfying the condition (&,b)=3.

2.9. Find (2a-5b, a+3b), if [g]=2, [6|=3, (a"b)= 2_;5 _
2.10. Calculate the sine of the angle between the diagonals of a parallelogram whose sides are vectors @ =2i + j —k, b =i -3] +k .
Task 3

3.1. Find [2a+b, b, where a=37 —j—2Kk; b=7+2j -k .

3.2. Calculate the area of a parallelogram built on vectors @ = M+ 2f and b = M -3, if |fi|=5; |i|=3, (M"fi)=

o3

3.3. The vector ¢ is perpendicular to the vectors & and b , the angle between & and b isequal to g Knowing that |a|=8, ‘5‘=3, Ic|=3, calculate
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3.4. Find [2a—b, 2a+b |, where a=2i - j+k; b=3k -1 —27 .
3.5. Find the vector x, if it is known that it is orthogonal to the vectors a=i —j+3k, b =27 +3] -k and ()‘( 2T—3T+4IZ)=51.
3.6. Find the coordinates of the vector x, if it is orthogonal to the vectors &(2, 3, -1), b(L, -1, 3) and |%|=1.

3.7. Find the unit vector d, coplanar to the vectors &(2, -1, 3) and b(4, 2, 0) and orthogonal to the vector &(1, 1, 1).

3.8. Calculate the area of a parallelogram whose sides are the vectors & = m-+2fi and b =m -3, if [T =5, [f|=3, (M"fi)=

ola

3.9. Calculate the sine of the angle between the diagonals of a parallelogram whose sides are vectors a=2i + j +k, b=i-3] +k .
3.10. Calculate the height of the parallelepiped built on the vectors a=3i +2j -5k, b =1 - j+4k, ¢ =i —3j +k, if the parallelogram built on the

vectors a and b is taken as the base.
Task 4

4.1. Write the equation of a straight line passing through the origin perpendicular to the straight line 2x—-6y +13=0.

4.2. Find the angle between the line 2x+3y-1=0 and the line passing through the points M;(-1; 2), M,(0; 3).

4.3. Find the equation of a line passing through the point M(-1; 4) parallel to the line 2x+3y—4=0.

4.4. Given a triangle with vertices at the points A(-1, 2), B(0,1) and C(1, 4). Write the equation of a straight line passing through the vertex A
parallel to the opposite side.

4.5. At what value of the parameter o are the lines (3a.+2)x+ (1-4cr)y+8=0 and (5a.—2)x+(a.+4)y—7=0 mutually perpendicular?

4.6. Triangle vertices A(3,5), B(-3, 3) and C(5, —8) are given. Determine the length of the median drawn from the vertex C.
4.7. For what values of a are the lines ax—2y-1=0 and 6x—-4y-3=0:

a) parallel; b) have one common point?

_—

4.8. Write the equation of a straight line passing through a point M (4; 3) perpendicular to the vector M{M, | if m,(0, -2), M,(3,5).
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4.9. Given a triangle with vertices at the points M, (2, 5), M,(~1, 3) and M,(0, 0). Write the equation for the median drawn from the vertex M.

4.10. Find the equation of the line passing through the point M, (-1, 2) perpendicular to the line connecting the points M, (2, 3) and M;(0, —1).

Task 5

Given the coordinates of the pyramid vertices 414243Aa4. 1t is required to find: 1) the length of the edge 4142; 2) the angle between the edges 414> and
A144; 3) the area of the face 414243; 4) the volume of the pyramid; 5) the equation of the straight line 4144; 6) the equation of the plane 414243; 7) the
angle between the edge 4144 and the face 414243; 8) the equation of the height dropped from the vertex A4 to the face A14.43. Make a drawing.

51 A(339), A,(6,9,1), A(1,7,3), A,(8,5,8).
52. A354), A,(5,8,3), A(1,9,9), A,(6,4,8).
53.  A(2,4,3), A(7,6,3), As(4,9,3), A,(3,6,7)
54.  A(9,55), Ay(-3,7,1), Ay(5,7,8), A,(6,9,2)
55.  A(0,7,1), A,(4,1,5), Ay(4,6,3), A,(3,9,8)
56. A(5,5,4), A(3,8,4), A4(3,5,10), A,(5,8,2)
57. A(611), A,(4,6,6), Ay(4,2,0), A,(1L2,6)
58. A(7,53), A (9,4,4), Ay(4,5,7), A(7,9,6).
59. A(6,6,2), A (5,4,7), A(2,4,7), A,(7,3,0).
5.10. A(L-31), Ay (-3,2,-3), Ay(-3,-3,3), Ay(-2,0-4).
Task 6

Construct a curve on the plane, bringing its equation to the canonical form.

6.1. X +8x+2y+20=0.  6.2. 3x*—4y? +18x+15=0. 6.3. X2 +2y? —2x+8y+7=0.
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6.4. X*> +8x+y+15=0. 6.5. X*+y?+4x—-10y+20=0. 6.6. 5x% +9y —30x+18y +9=0.

6.7. 4x? +9y% —40x+36y+100=0. 6.8. 9x* —16y? —5x—64y—127=0. 6.9. 2x*>+8x—y+12=0.

6.10. x? +4y? —6y+3=0.

7.1.a) z=1-x>—y?;

7.2.3) X2 +2x+2y* +42° =0;
7.3.a) x> +y? +47° +6x=0;
7.4.2) 2y? +7° =1—x;

7.5.a) 9% +4y® -8y — 72 =32;
7.6.a) x> —2y*+7°+27=0;

7.7.a) x> +y?+22 —3x+5y—47=0;
7.8.a) z=2+x2+Yy?%;

7.9. a) 36x° +16y? —9z2 +182=9;

7.10.a) x> —y?—72=0;

Task 7

Construct a surface, bringing its equation to the canonical form.

b) z=4-x?,

b) y2+5y+z:4.

b) x*+12% =2z,

b) xy=4.

b) x?—y?—6x=0.

b) z?+4z-6y—20=0.
b) y? =4x+1.

b) z=1-x2.

b) 22 -2z2-8x-7=0,

b) y2 =4x-2.
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2
1.1, a) lim X0

x>-3x2 4+ 7x+12

_ 2x*—x-6

2 J—
13.a) lim X *+x=4

x>-13x% 45X +2

2 a—
14, a) lim 25 X1
x—=1 3X° —X—-2

2
15.a) lim X F3%*2

x—>-13x2 + 4x+1

2
16. a) lim 2X =*=10

x>2 x2-x-2

2_
1.7. a) lim X =3%*2
X—2 1_1

2

2 —_—
18 a) lim 25 =9%x*4

x4 x% 4+ x—20

TYPICAL CALCULATION No. 2
FUNCTION LIMIT. DERIVATIVE AND ITS APPLICATIONS
TO RESEARCHING FUNCTIONS AND PLANTING

Task 1

Find the limits for the functions given below without using L'Hopital's rule.

_ B5X? 4+ 2x+1 . 1-cos X

b) lim ————. ¢ lim——.
X—0 3X" +3X° =2 x—0 XSIn X
_oext—2x3 +1 11—

b) lim === ¢) lim ! s
x—0 5x® 4+ 4x+3 X=X

5 B 2

b) lim 6x6+4x2 12. ¢) lim COS X 2cos X
x—0 3X° —4x° +1 x—0 X
. 5x°+ %% -6 1-cos 2X

b) lim — c) lim ————.
Xx—=0 2XT — X —12 x—>0 XtgX

4 a3

b) lim x5 8x2+1 ¢) lim COS X 2cos x.

X0 7X +4X° +5 x—0 X

2 X
tg” —
_ 2x3-6x-5 .

b) lim ———. ¢ lim 2,
x—wo Bxc —x-1 x—>0 X
. 1P —(x -1 1-

b) lim (x+ )2 (x )2 . ©) Ilmﬂ.
X—)oo(x+1) +(X+1) x—01—Cc0s 4x
_o2xt -3k 41 2

b) lim % c) lim xotg2x .
x>0 4x° +6X° =3 x—0 Sin 2x

d) lim (X—_ljm .

x—oo\ X —3

1-x

d) lim (1-4x) " .

x—0

X+2
d) fim [ XE4)
x—o\ 3X+ 2

d) lim X—”’] .

x—owol X—2

2 —2x+1)
d) lim | "=
x—w| X© —4X + 2




2 4 2 x
. 10 .2 5x“ -3 .1 . -

1.9.a) lim X;¢.b) lim % c) Ilmm. d) lim 2x-1 :
x—>-22x° +9x+10 x—0 4X° 4+ 6X° —3 x—01—C0os 2X x—o\ 2X+1

2 2 5 2 2x-1

. -2 . 4+5x° -4 . .

1.10. a) |ImX2L. b) lim L: c) lim X, d) lim X+l .

x=>12x° —x-1 x—0 8—6X—X x»osinzﬁ x—00\ X —2
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Task 2
Investigate these functions for continuity and indicate the type of discontinuity points;

in condition "b™ additionally pl;ot a graph of the function.

2.1.

2.2.

2.3.

2.4.

2.5.

x? =1 if —oo<x<1;
In(L+ x 2 . .
- (x2 ) b) f(x)= S if 1<x<4;
x=3 if x>4.
x> if —oo<x<0;
=arctg% b) f(x)=qsinxif 1<x<%;
Lo a2
1 Inx if 0<x<I;
=3x2 b) f(x)=1x-1 if 1<x<3;
x> -3 if x>3.
tg x if 0<x<Z;
4
zl—il‘x b) f(x)= 27” if %<X<7r;
sinx+2 if x>ur.
1 X+1 if —oo<x<l
B b) f(x)=13" if 0<x<2;
2% 41 6-x if x>2.
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2\& if O0<x<1
2.6. a) f(x):%. b) f(x)=<x*+2if 1<x<2
z+4 if x>2.
X
X241 if —oo<x<l
2
27.2) f(x)=X 2 b) f(x)=12  if 1<x<4
X—X X
x=2 if x>4.
Xx+1 if —o<x<3;
2.8.2) f( ):ix—1 2 b) f(x)={3x=7 if 3<x<4;
- —X
3+\/; if x>4.
, cosx if x<0;
29.2) f(x)= X X*8 b) f(x)=41-x if 0<x<3;
X —2X ) ]
x“=5if x>3.
0 if x<Q0;
sin(x—3) : n
2.10.a) f(x)= b) f(x)=<tgx if 0<x<—;
) f) x> —4x+3 ) F(x)=1t9 4
ix if x>Z.
T 4

Task 3

Find the derivatives of the functions given below.
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3.1.a) y=+/xarcsin Vx +1-X; b) y=x¥SI"%: ) x4 —6x2y? +9y* —5x% +15y% —100 =0.

2x+1. !

3.2.a) y=Intg 7 b) yzxﬂ; ¢) x¥ —y* =0.
3.3.a) yﬂn,/if:zz; b) y=x% c) eX+e¥-2%-3=0.
3.4.2) y=|n(3x2+\/9x4+1); b) y=x"x 9) sin(y—xz)—ln(y—x2)+2 y—x2-3=0.
3 ) Yy
3.5.a) y=arcsin 2X 5 b) y=x>"; ¢) Y ex _3\/z=0.
1+x X X
3.6.a) y=arctg i—i; b) y=(sinx)®X; ¢) x?siny +y3cosx—2x—3y+1=0.
i 2 2 2
3.7.a) y=arcsin&; b) y=(x+D*; ¢) Y
V1+sin? x 25 9
2
3.8.a) y=In2 -1 b) y=x%" sin2x; ) x*+yt=x%y2

I +1+1

3.9.a) y=e*—sine* cos’e* —sin®e* cose*; b) y=x%Inx, c) Ix+,Jy =+a.

2

x+1 b) y=(x+1);; c) 2ylny=x

2

3.10.a) y=arctg(x+1) + ——;
X +2X+2
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Task 4
Find the second order derivatives for the functions given below:

4.1. y=cosX. 4.2. y=arctgx>. 4.3. y=log,Y1-x* .
44 y-e . 45, y=2NX 4.6. y=—ﬁ.
1-x2 X+5

1
4.7, y=Zx2(2In X—3). 4.8. y:%x2 .1/1_)(2 +§-1/1—X2 +Xarcsinx.4.9. y=—%x-sin3x—%cos3x.

4.10. y=sin®x.
Task 5
Find the first and the second order derivatives for the next functions given parametrically:
5.1. x=t>+2; yzét?’—l. 5.2. x =arcsint; y=v1-t2. 5.3. x=at?; y=bt.
5.4. x=cost; y=sint. 5.5. x=a(t—sint) y=a(l—cost). 5.6. x=acos’t; y=asin’t.
5.7. x=Int; y=t?-1. 5.8. x =arcsint; y:In(l—tZ). 5.9. x=at-cost; y=at-sint.

5.10. x =arccosvt; y=+vt—t?.

Task 6

Using L'Hopital’s rule, find the limits for the functions:
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32x+1+1 In
6.1.a) lim —; b) lim —.
)z ) T etgx
1-cos ax :
6.2.a) lim ———: b) lim x| ex -1].
) x—01—cos Bx ) XI—>00X
6.3.a) lim 1_C(2)SX; b) lim (r—2arctg x)In x.
x—0 X X—>00
g™
6.4.2) lim 23X, b) lim 2 _
x—o xS X—-1+0 In(1+ X)
ax _ ,—2ax _
6.5.a) lim S . b) tim =1
x—>0 In(1+x) X—>1+0 Ctg X
3 502
6.6. a) lim X 32X X+2. b) lim arcsin x-ctg x.
x=>1 X°—7X+6 x—0
X_ —X_
6.7.a) lm & —¢ —2X. b) fim X (a5 0).
x—>0 X-—=SIn X x—o0 x*
oX _ A—0X 100
68.a) Im> —° b) fim 2.
x—0  SINX x—>wo @k
Z—arctg(l—lj
6.9.2) lim X/ b) lim 1-x)tg™=.
X —>00 . x—1 2
sin=
X
X X
6.10. a) lim 2. b) fim (L+x)tg™> .
x—>0 tgx x—-1 2

Task 7
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Write the Taylor formula of the third order with a remainder term in the Lagrange form

for a given function at a point x,.

al = =X
7.2. E[ea‘i‘e aJ, XOZO-

7.6. x10—3x0 +x2+2, x,=1.
7.8. xcosx, Xy =0.
7.10. €™ x, =0.

Task 8

Explore a function and plot its graph.

2
82 y=—*_. g3 y-2X*
(1+x X
X3 X3+2
8.5 y= : 8.6. y=
Y 2(1+ x)? 2X
x? -1 x?
8.8. y= . 89. y=—-:.
Y e Y X
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CONTROL WORK No. 1

Task 1. a) Check the compatability of the system of linear equations and solve it using the Cramer formulas and the matrix method.

b) Investigate the system for compatibility and, in case of compatibility, solve it using the Gauss method.

1.1. a) X + Xp — X3 =6, b) 6%, + X, — X3 =1,
2% +3Xy —4X3 =21, Xp —Xo +2X3 =3,
X, — X, —3X3 = 6. 8%, — X, +3X3 =7.
1.2. a) 3% —3X, +4x%5 =7, b) 2% +3X, +4X%5 =1,
1.3. a) X| +2X, — Xg = 2, b) X —2X, + X5 =6,
1.4. a) 2%, —3X, +5%5 =11, b) 4x, — 2%, — X3 =1,
3%, — X, +5%3 =10, X, + Xy +3X3 =3,
Xg +2X, —4Xg =—T. X, —5X, —10x%3 =0.
15. a) 4% — X, —3X3 =1, b) X, + Xy — Xg = 2,
3Xy +6X, +2X3 = 4, 3% —3X, +2X3 =5,
2% +4X, + X3 = 4. 9% —3X, + X3 =16.
16. a) X, +2X, +3X%5 =6, b) X, +2X, — X3 =0,
1.7. a) 2% + X, =3, b) 2%, +3X, —4X%5 =1,
3X + Xy +2%3 =0. —3%; +4X, —4X3 = 2.
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1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

X — Xy —3X3 =13,
2%, + X, —X3 =0,

b)

3% —2X, +4Xg =—15.

2%; +3Xy +5X3 =

12, b)

X —4Xy +3X3 =22,
3% — X, —2X3 =0.

b)

X1 +2Xy + X5 =7,

{4xl +2X, — X3 =12, b)

2% + X, — X3 =0, b)
X +Xg =1.

_5’

2%, — Xy =1,

b)

X2 +X3 :_2.
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X —Xp —3%3 =0,
—2X% +2X; +5X%3 =1,
3%, —3X, —9x%; =0.

2% +6X, + X3 =1,
3% +9Xy + X3 = 2.

X2 _3)(3 =2,

3Xy +2X, —4X3 =8,
2%, +4X, —5%3 =11,
X1 —2Xy + X5 =1

X1 +Xo + X3 =1,
Xy — X +2X3 = =5,
2%, +3X3 =—2.

Xl_2X2 = 5.



1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

2%, —3Xy — X3 =6,
3%, +4X, +3X3 =5,
X+ Xy + X3 = —2.

3X; +2X, +5%3 =-10,

2%, +5X, —3X3 =6,
Xy +3X, — X3 =—6.

3% +4X, +2X%3 =8,

2%y +3Xy — X3 =5,
3% — Xy + X3 =4,
Xy + Xy + X3 =6.

2X1 - X2 = 0,
Xg +2Xy — X3 =2,
X5 + X3 = -5,
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b)

b)

b)

b)

b)

b)

b)

b)

3%y +2X, —4X3 =38,
2% + 4%, —5%3 =1,

3% + Xy +2X3 = =3,
2%y + 2%, +5X3 =5,
5%, +3X, + 7X3 =1.

X —5X%; + X3 =3,
3 +2X, — X3 =7,
4%, —3X, =1.

5% —5Xy —4X3 =3,
Xq — Xy +5X3 =1,
4%, —4X, —9%3 =0.




1.24.

1.25.

1.26.

1.27.

1.28.

1.29.

1.30.

5% +8X; — X3 =7,
2% —3Xy +2X5 =9,

X +2X, +3%3 =1.

2% — X, +5X%3 =4,
5%, +2X, +13X3 = 2,
3% — Xy +5X%3 =0.

2%, —X, =0,

X2+X3:O.

3%y +4X, +2X3 =8,

X, +5X, +2X53 =5,
2%y +3Xy +4%5 =3.

Xg + Xy — X3 =—2,
2%, +4Xy +3X3 =3,
3% —2X, +5%X3 =13

X2 _X3 :_3.

b)

b)

b)

b)

b)

b)

b)

3% + X, +2X%3 =1,
2%y + 2%y —3X3 =9,
X — X + X3 =2,

2X%; +3Xy +4X5 =5,
Xy + X5 +5X3 =6,
3% +4X, +9X%3 =0.

3% +4X, + X3 =2,
X, +5X%X, —3X3 =4,
2% — Xy +4X%3 =5.

2% +8X, —7%3 =0,
2%, —5X, +6X%5 =1,
A% +3X, = X3 = 7.

Task 2. The coordinates for the points A, B, C are given. It is required to find: 1) projﬁﬁ ;

2) the area of a triangle with vertices at points A, B, C.

2.1. A(7,1,9),
2.2. A(3,1,4),

B(9,-2,0),
B(-3,-1,0),

C(0,3,-3).
C(2,1,-3).
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2.3. A(2,1,0),
2.4. A(3,-1,-1),
2.5. A(2,1,-1),
2.6. A2,-3,7),
2.7. A(7,-3,4),
2.8. A(1,1,0),
2.9. A(1,-1,4),
2.10. A(2,-4,7),
2.11. A(1,-1,0),
2.12. A(0,9,-3),
2.13. A(1-1,3),
2.14. A(2,-2,-3),
2.15. A(1,0,0),
2.16. A(1,3,7),
2.17. A(1,-1,1),
2.18. A(2,-2,3),
2.19. A(2,0,-1),
2.20. A(1,-1,3),
2.21. A(1,-2,2),
2.22. A(1,2,-3),
2.23. A(7,9,-3),
2.24. A(1,-2,0),
2.25. A(3,-1,4),

B(3,-1,-4),
B(3,1,4),
B(7,-1,3),
B(-3,-1,5),
B(3,2,-1),
B(2,1,-4),
B(2,3,-4),
B(8,1,0),
B(0,1,7),
B(1,3,4),
B(2,-2,4),
B(-1,-4,7),
B(-3,1,-1),
B(7,3,-5),
B(0,1,0),
B(1,-1,4),
B(1,-1,1),
B(2,1,-4),
B(2,0,1),
B(2,-1,4),
B(1,0,-1),
B(2,4,-1),
B(-4,2,3),

C(0,2,-2).
C(1,0,5).
C(0,3.,3).
C(9,0,1).
C4,1,1).
C(0,1,0).
C(1,0,-5).
C(-1,-3,0).
C(-1,-2,-3).
C(0,2,-5).
C(1,0,1).
C(0,4,-3).
C(1,-2,-3).
C(-1,-4,0).
C(1,4,-5).
C(0,1,-1).
C(0,1,7).
C(0,1,0).
C(1,4,-7).
C(2,3,-4).
C(0,3,0).
C(7,1,0).
C(0,1,-1).
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2.26. A(6,-3,0),
2.27. A(4,5-1),
2.28. A(3,-1,2),
2.29. A(1,1,-1),
2.30. A(1,0,2),

Task 3.

B(3,0,1),
B(6,4,2),
B(3,6,-4),
B(3.,4,0),
B(3.,4,7),

Find the angle (in degrees) between the line =—

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.

C(2,-4,3).
C(0,3,-1).
C(0,1,-1).
C(0,5,-2).
C(5,-1,1).

x-1 =y_+3
2 -1
M1(1,-3,4),
M1(1,1,4),
M1(1,2,-1),
M1(1,2,3),
M1(1,3,-1),
Mi(1,-2,-1/2),
Mi(1,1,4),
Mi(-13,3,2),
Mi(1,-1,-3),
M1(2,3,-10),
M1(1,1,4),
M1(2,1,-3),
M1(1,0,1),
M1(-5,-1,1),
M1(2,1,3),

z+1

M2(0,-2,-1),
M2(-2,1,1),
M2(-1,0,4),

M2(4,-1,-2),

M2(-3,1,-9),
M2(2,1,3),
M2(2,-1,0),

M2(-3,-2,-4),

M2(0,6,1),
Ma(1,-1,-9),
M2(2,0,2),
Ma(1,1,0),
M2(0,0,2),
M2(-2,0,1),
M2(0,0,4),
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= and the plane, passing through points M;,M,, M.

Ma(1,1,-1).
Ma(1,3,6).
Ma(-2,-1,1).
M3(4,0,3).
Ms3(1,0,-7).
Ms3(0,~1,-1).
M3(3,2,1).
M3(0,0,-3).
M3(2,2,-2).
Ms(0,-1,-4).
M3(0,3,3).
Ms(-1,2,7).
Ma(L,1,1).
M3(~1,1,0).
Ma(1,1,1).



Task 4.

3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.

Simplify the equation of the curve and depict it in the figure

M1(2,3,1),
M1(-1,0,1),
M1(2,-2,9),
M1(1,2,-1),
Mi(1,-2,1),
Mi1(1,-2,-5),
M1(1,3,4),
M1(1,-1,0),
M1(-1,2,0),
M1(1,2,3),
M1(-1,1,0),
M1(2,-3,5),
M1(3,-1,2),
M1(1,3,1),
Mi(1,-1,1),

4.1.

4.2.

4.3.

4.4.

4.5.

M2(4,-4,-2),
M2(3,-2,-1),
M2(-2,0,1),
M2(2,3,-10),
M2(0,-1,2),
M2(2,3,2),
M2(0,1,2),
M2(-3,-4,1),
M2(6,3,1),
M2(2,4,1),
M2(3,—4,5),
M2(1,-2,12),
M2(4,-1,-1),
M2(4,0,7),
M2(5,4,-2),

X2 +2y2—2x+8y+7=0

x2+8x+2y+20:0

X2 —y2 +2x+6y-12=0
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M3(1,0,0).
M3(-4,-1,2).
Ms(—4,1,3).
M3(0,4,1).
M3(2,-1,-1).
Ms(-1,0,5).
M3(2,5,0).
Ma(-1,-1,2).
M3(~15,0,2).
M3(2,0,-3).
M3(-2,0,2).
Ma(4,-1,7).
M3(2,0,2).
Ms(-2,1,2).
Ma(-1,-2,2).

Ox2 +y2 —36x+2y+28=0

4x2 +9y? —40x—36y +100=0



46. x*+y?+4x-10y+20=0
4.7.  9x*+4y*-54x-32y+109=0
4.8.  25x*-9y? —150x—72y-144=0
4.9,  2x*+8x—y+12=0
410. 9x*+4y®-18x=0
411, x?—4y?—4x+40=0
4.12. x*—-4y?+6x+16y—-11=0
4.13. 9x®+10y%+40y-50=0
4.14. 9x*-16y* -18x+64y+89=0
4.15. x?+4y?—6x+8y=3
4.16. Xx*+4y?+2x=0
4.17. 4x?—y?—24x-6y+43=0
418. x=2y?-12y+14
4.19. y?+4y=2x
4.20. 2x®-5y? +4x+40y-58=0
4.21. 4x*-9y?+4x=0
4.22. x*-8x+y+15=0
4.23. 3x®+4y® +30x—24y+99=0

4.24. 3x?-4y?+18x+15=0

267



4.25. 9x*-16y% —54x—64y-127=0
4.26. y>-6x+6y+27=0
4.27. 5x*+9y?-30x+18y+9=0
4.28. 4x2+8x—y+7:0
429, y?+2x-4y+14=0

4.30. x?-5x-y+7=0

Task 5. Find the limits for the functions given below:
3 2 _ AL ( 2 )
51. a) lim —3 o +2; b) lim COSX.. c) Iim(zx 1} ; d) lim Inix” -3
x>0 2x3 — 4x% — x x—0 Xsin 3x x—o\ 2X +1 x>2 x2 +3x—10
2 tgx
52, a) lim X2 TFL. ) fiy SOSXZCOS g lim(l— 1 j; d) fim | .
x—>-13x° +4x+1 x>0 ] _ / =0\ x ¥ -1 x—>0\ X
2
. xP+4-2 34+ x? . sin2 , *
53. a) lim ———; b) lim M o hmu; d) lim (COSL) .
x—0 /x 116 —4 oo 2xt —x+12] x—>01—cosdx X =00 2
3 5x _ ~nc3
54.  a) lim x®—27 : b) fim 2x+53)" . ¢) lim COSX —COS x; d) lim x+2|nx.
x=34/3X — X x—o| 2X+1 x—0 3x2 X—>00 X
3 (v 1) _ 2 x
55. a) Iim%; b) Iimﬂ; c) lim 1- X 1; d) lim (cosx)’
x> (x+2) +(x+1) x>0 2Xtg4x x>0 o™X _q -7
3 pa—
56. a) Iimzx;m; b) Iim(\/x+2—\/;); c) ljm 1=C082X . d) lim (1-x)In{t-x).
x4 T —27x—4 X—>00 x—0 XSIn 3x x—1-0
3 2 _ay_ tgx
5.7, a) lim > 2, b) tim SOSXZCOSZK. gy iy ZOXZS g “mﬁ :
X—>0 5X —X+2 x—0 2_ / x5 x“ —4x—-5 x—=0\ X

268



2 _ X+1 1
58, a) lim > X710 b) nm[3x+1j L ¢) limmoosTX, d) lim x%e " .
=2 x3_xX—6 x—w\ 3X+4 x—0 2xtg3x x>0
2 2 \/ . \/ - 2
59. a) ImM' b) lim i c) lim 1+sinx —vi-sinx . d) Ilm( )
x->13x% —2x—1 x> 20x* —4x+8 x>0 tg3x x—0
1 2
x3 +5x cosx—1 l-e X =
5.10. a) lim ; b) lim——>"——; ¢) lim——; d) lim5-2x)" " .
x>0 2x* —3x2 +1 x->0 COS 2X — COS5X oo (101 x—>2
X
5x? —3x +1 X2 —3x+2 (x2e) 5,3
511. a) I|m— b) lim ————,; ¢) lim| = ; d) lim x*sin=.
x>» 7x% + x5 x52 \J5— X —/x+1 x—m| X -1 X—>00 X
5.12. a) Iim(\/x2—2x—1—\/x2—7x+3j; b) lim X’ —5x-21. c) Iimw; d) lim(1—x)"*.
X—>00 x—3 2)( —-3x-9 x—0 X x—1
2 3,42
513, a) lim XXy 3Ly M d) im i x)°*
x>-42x% 45512 ' x>0 Ax* 4 X +3 x—=0 3% X”E
2 3 2 1
— 1 — X
5.14. a) lim % b) Ilm( > ) c) I %' d) Ilm(x+e ) .
x—0 4x° —2x° +1 x5 X—5  x2 - x—20 x=0 X= —sin x x>0
2,3 =x 2
5.15. a) Ilm—X6 b) Iimu; c) lim(1-4x) " d) Iimﬂh—xl.
x>23x2 —x-10 ' x—>o  8—6X+ X x>0 x>0 cos3x—e
p— 2_ p—
5.16. a) Iimw; b) fim =—=—""" 2x* —9x+4 . c) Iimw; d) lim (L+x)"9%.
x>0 Bx© +3x+1 x>4[B—X —4/X—3 x—0 3x x—>+0
2 2 3 B
5.17. a) lim 20+Xx—X : b) lim X+ X" +3X : i 1 cosSx;
x—>53x2 —11x — 20 xo® x2 4+ 2x—3 x—>0 3xtg3x x—>11 X

1
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f— 7X_
d) limi=% =X
x—=>0 SIN X+ X
5.22. a) lim J23_x—x;
x—>2 X° -8
5.23. a) lim 22X+,
1 8x°-1
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)

—_4x .
5.18. a) limY2=X"L. b) Iim( 2X j ; c) lim L=SnX . d) lim In2xIn(2x-1).
x-1/5_x 2 x>\ 142X x>=(m ? x—>5+0
—-x
2
2 3
5.19. a) lim s+l l X :1 ;. €) lim(x+2)In(2x+1)~In(2x 1))
x>0 54 2x3 4 x* +3x° x—>-1x3 2X X—>00
3 2 2 1
— — X
520. a) |.mﬂ b) lim X *+2Xx" =3 VX ) dim(x+3)
x->12x% +x-3 X—>°°3x +x3+2x2+1 " " x>0C0S3x—COS5X X0
5.21. a) fim X225, b) jim X285 ¢y i (¢ )in(2-3x)-In5-3x); d) lim &>
o x>e 4x2 —x+1 x—5 2x? — X—o0 x>0 sin 2x — 2x
1\ 2 1-sin2 ™
b) Iim(sx 1} ; 0) lim——X"; d) lim 2,
x>\ 5X + 2 O N os® 2x—cos2x | -1 (x—1)
3
X —
; b) Iim( 4x2—7x+4—2x); C) Iim(l+tgzx/;) ;d) lim w.
X—>0 x—0 X—>+0 =
ex -1
3 i
5.24. a) lim WAx . b) lim= _‘/;; C) Ilmﬂ; d) lim (ctgx)
xo0 x4 —3x2 +1 x>l fx =1 x>01—C0S7X x—>+0
2 p— _ -
5.25. a) Ilmﬁ; b) lim —)2(”; c) lim(2x+5)In(x—2)~In(x-1)); d) lim ﬂ.
x—0 11-1 x>0 5x4 4 x% +11 X0 x=0eX —e™* —2x
1
2 3_ 2 _ 2 X
5.26. a) lim X100 py g XX Ylmcos) d) lim(e* + x)
x> 100x? +15x =l X7+ Xx-2 x—0 tgx x—0
4 3
5.27. a) fim ~=Y4X gy 4im FCEX 120 i (3x 1) In(L-3x) - In(5-3x)): d) lim| —— — L
x>-35-/22-x ' x>0 4x3+x% -6 x—>00 x>0 xsin X x?



1
2 2 3, 52 : o
5.28. a) Iimw' b) lim X"+ 2% 8. c) li xaresin3x_. d (E—arctngX

! 1 m 1 ||m
xow (x+1)° —(x—1)° x>2 1-./3-x x—0 COS 2X — COSBX ) x40\ 2
51 v 3 2,y 2 x*
529, a) lim —Y2iXtX .y g 2XEACHXTI oy [ XA d) lim In(x-1)inx.
x—>-1 X3 _4)(2 —5x X—>o0 5)(2 +2x-1 X—>o0 X2 -2 Xx—1+0
3 _ 3 _gy2 _ i .
5.30. a) Iim#; b) Iimw; ¢) lim——2aresin 3 ; d) lim (Inctgx)9*.
x>0 7x* +3x% +x -1 x>3 x% 4 x-12 x=0 /1+5in X —~+/1—sin X X—>+0

Task 6. Investigate the next functions for continuity and establish the nature of discontinuity points, if any. In paragraph b, additionally

build a graph of the function

1, x<0,
6.1. a) f(x)= ;Hl ; b) f(x)=42%, 0<x<2,
X° +2X
X+3, x>2.
1 1-x, x<0,
6.2. a) f(x)=2-x: b) f(x)=10, 0<x<3,
x-3, x>3.
A 2, x<0,
6.3. a) f(x)= |;(+ | ; b) f(x)=14cosx+1, 0<x<m,
X +4x

1-x, x>m

Inx, 0<x<1,
b) f(x)=9x-1 1<x<4,
x2-10, x> 4.

64, a) f(x)=3n(xr2).

1
X2 +x-2
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3
65 a) f(x)=="3.

b
X2 +2x

6.9. a) f(x)zl—cosx_

6.10. a) f(x)=~ 2

1

6.11. a) f(x)=ez+;

272

x2+1 —o0<x<0,

b) f(x)=1tgx, O<x£%,

1 x>£.
4

V1-x?, —1<x<1,

b) f(x)={x-1 1<x<3,
—Ji X > 3.

sinXx, —oo<X<mT,
b) f(x)={x-n, m<x<2n,
COSX, X>2m.

1, x<0,
b) f(x)=43%, 0<x<1,
2X+2, x>1.

-X, X<0,
b) f(x)={Inx, 0<x<e,
X—e, X>e

-1, x<0,
b) f(x)={cosx, 0O<x<m,
1-X, X>m

2Jx, 0<x<1,
b) f(x)=4x*+1, 1<x<2,
2

—+3, X>2.
X



6.12. a) f(x)=2SNX .
X" =X
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Xx+1, x<0,
b) f(x)=14*, 0<x<1,

6—x2, x>1.

Va—x%, —2<x<2,

b) f(x)=9x-2, 2<x<4,
—2Jx, x>4.

b) f(x)=1=x, —<x<m,

x> +1, x<0,
b) f(x)=13", 0<x<2,
6-X, X>2.

X+1 —-o00<Xx<3
b) f(x)={3x-7, 3<x<4,
3+\/;, X >4,

cosx, x<0,
b) f(x)=41-x, 0<x<3,

x> -5 x>3.



6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

2 1014221,

X% —2x

a) f(x)=

1-cosx .
32 —x3’

a) f(x)=
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b) f(x)=1tgx,

b) f(x)=

b) f(x)=

b) f(x)=

b) f(x)=

b) f(x)=

b) f(x)=

X, X<0,
x?, 0<x<1,

x2+1, x>1

X+2, x<1,
3, l<x<2,

—-X+5 xx>2.

sinx, x<0
x?, 0<x<1,

J;+L x>1.

x<1,
Inx, 1<x<e,
—3x+4,

_XZ,
X>e.

X, X<0,
—J; 0<x<4,
(x—47, x>4.

1, x<0,
ctgx, 0<xsg,

T T
X—=, X>-—.
2 2




Task 7.

6.28. a) f(x)zal’CSin(X-l-l)_

b
X% +X

3
6.29. a) f(x)=X—*2.
X—X

2X
6.30. a) f(x)=2_—1;

X2 +3x
Find % for the next functions
71 a)y= In(tg 2”1) :
c) xY —y*=0;
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sinx, x<0,
b) f(x)={x*-3, 0<x<2,
x=1 x=>2.

-1 x<0,
b) f(x)=1{tgx, 0

IA

>

IA
N3

4 i
—X, X>—.
T 4

—x2, x<0,

b) f(x)=1{vx, 0<x<1,

E—1, x>1.
X

-X, x<0,
b) f(x)=41-x% 0<x<1,
Inx, x>1.
(x+2), x<-2,

b) f(x)=1v4-x*, -2<x<0,

X, x>0.

t
b) y:XmX;

d) x=arcsint; y=+1-t2.



X X x
7.2.  a) y=sin’—ctg—; b) yz(\/;) X;

2 2
C) y2 cosx = 4sin3x ; d) x=2cos’t; y=2sin’t.
73.  a) y=+/xarcsinvx +1—x ; b) y = x¥Sinx.
1
c) x* —6x2y? +9y* —5x% +15y2 —~100=0; d) x=t2+2; y=-t3-1.
3
74. a) y=|n[3x2+\/9x4+1); b) y=x"%;
) sin(y—xz)—ln(y—x2)+2 y—-x*-3=0; d) x=cos’t; y=sint.
1
Je ) ¢ X  2C0SX b) ( )x
5 a)y=tg—+ ; y=(nx)" ;
2 <Jcos2x
c) xy?-32 +2x3 =0 d) x=1+e'; y=t+e™,
X
76 @) y=in [1+sin x ) (x+1)°(x—3)?
b6. a)y= ; y= ;
1-sinx J(x+2)
c)e*+e¥-2% -3=0; d) x=5t%; y=4t>+tgt.
1_X H COS X
7.7. a) y=arctg |— ; b) y =(sinx)™>*;
1+x
c)xzsin 3 —2X— =0; = $t; y=11sin°
y+Yy cosx—2x—-3y+1=0; d) x=11cos"t; y=11sin”t.
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5
7.8. a) y=arccosvi-e* +—:

v
c) e/ +xy=3;

23
7.9. a) y=arcsin :

1+ x5
Yy
c) l+ex —3\/2:0;
X X

x2+1-1
a)y=IN—;
Vx2 41 41

C) x4+y4=x2-y2;

7.10.

7.11. a) y:logz<sin2x)—3x2 1+X;

C) xsiny+ysinx=0;

) / sin X
7.12. a) y=arcsin |——;
1+sin? x

X2 2

c) —+—=1;
25 9
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b) y = (sin x)¥™" X
d) x=e'cost; y=e'sint.

sinx ,

b) y=x"";
d)x=2(t—sint); y=2(1-cost).

b) vy = x%* sin2x;

d) x=arcsint; y:In(l—tz).
b) y =(sinx)"%*;

d) x= In(1+t2) y =t —arctgt.

4

b) y:(x2 +3x—1)X X

d) x=Int; y=t?-1,



X+1

7.13. a) y=arctgx+1)+

c) 2ylny=x;

7.14. a) y=%/(x+4)? arcsin7x?;

€c) Iny—xy=5;
7.15. a) y=e* —sine* cos®e®;
C) \/Y+\/V:1/7xy :

1) 1
7.16. a) y= In(l——J+— ;

X X

X
C) Xy =arctg—;

y
2+ctg’(2x-3
717. a)y= +etgi(2x-3).
In(\/Y+2)
0) y2 -5 ¥ +1gy=0;

X
7.18. a) y=Intg— +COSX +—C0S% X ;

2

c) e*siny—eY cosx=0;
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x2+2x+2

3

b) y=(x+1)";

d) x=arccosvt; y=+t-t*.
b) y:(\/;)COS&;
d) x=t—Insint; y=t+Incost.
b) y = x% Inx:
d) x=4tcost; y=4tsint.

(x—23/x+1
(x-5°

d) x=arctgt; y= In(1+t2).

Inx .

b) y = (arctgx)"";

d) x=tgt; y=ctgt.

b) y=(Inx)*;

1
d) x=——; y=tgt.
cost



7.19. a)y= arccoe(Zer —1);
c) sin(xy)+cos(xy)=0;

7.20. a) y=35x*—2x -1 +e ®*sin2x;

c) y=cos(x+Vy);

X+1
2 2 2
c) X3 +y3 =43y;
2sin x

7.22. a) y=Intg

C) Xx—y=arcsinx—arcsiny;

3X
a) y=——
V3x% — 4x

c)el—e¥ —2xy=0;

7.23. +1g2(1+sin x);

3x — x°

7.24. a) y=arctg ;
1-3x2

¢) 2% +2Y = 2%V
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d) x=2sint +sin 2t;

b) y=Vxsinxvl-e* ;

y =2cost +cos2t.
b) y = (arccos3x) 9>V,
d) x =arcsint;

_ (x+1*x-2
3/(X_3)2 '

y =arccost .

b) y

d) x=6c0s’t; y=6sint.
1

2

b) y=(cosx)" ;

d) x=1+e*; y=dt+e ™

) y:Ei/(x+3)ln(2x—3) ;

(x-3)°

d) x=te'; y=t+2t.

1

b) y=(ctgx) " ;

d) x=t>+2t; y=In(t+1).



725 a) y=+2x+1(In(2x+1)-2); by y=2( -4

C) arctgl =Inyx? + y2 ; d) x=2cost; y=sin2t.

X
In x ~7)103x -1
7.26. a) y=sin®e* cose* — ; b) y = (x-7) v3x-1 .
1-x* Yox+3p
x
c) x+y=e?; d)x=2t—t2; y=3t—t3.
arctgx X x
127. a)y= —In X b) y= :
2 1+x2 1+ x?
c) X2+y2 =25; d) x =cost +tsint; y=sint—tcost.
3(,2 2 _,f
X“+3\x° -3
7.28. a) y=e*v1-e®* —arcsine*; b) y= \/( X ) :
(x+5)*
. . S
c) cos(xy)=x; d) x=e"; y=¢e".

2
XX +1
7.29. a) y=3larcctg2x +47* In>(x+2); b) y=3/(— 2)2 ;
xc =1

c) x—y=e"Y; d) x=2sint; y=4cos’t.

1+Incosx i
ehLLieLy b) v = (2 2",
COSX

730. a)y=-

c) v3—3yx+6x2=0; d) x=t2+2t-3 y=t+t>.
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Task 8. Explore the function given below and plot its graph

x? -1 X341 1-x2
8L y="7. 82 y="". 8.3. y="-.
3
84, y=—* _. 8.5. y=(x—1)*. 8.6. y=—"
y (1+x)? y=lc-tk Yo1oe
4x3 X x2
8.7. y_l—xsl 8.8. y_l+x2' 8.9. y_ﬁ.
3 2
8.10. y:4XX+5. 8.11. y=x% ", 8.12. y:‘“‘x+1
3 2
8.13. y=— . 8.14. y=x*—6x2+16. 8.15. y:l"_x.
X" — _
8.16, y- X . 8.17. y=lfa-x2). 818, y- X
1-x2 x3 -1
2 3
8.19. y=2-2X 8.20. y=x/1-x2 . 8.2 y=—*
1-4x 2(1+x)
_X3+2 X X3
8.22. y="215. 8.23. y=—3"—. 8.24. y=——
8.25. y= © . 8.26. y=x>-6x*>+9x-3. 8.27. y:2+_X3_
(x-2) 2
4
828 y-X 1 8.29. y=Inf-x?). 8.30. y=—>%_
X 4+ X

281




BcnomoraTtenbHbIN pasgen
The Exam Questions

Educational discipline “Mathematics-1”
1. The matrix notations and terminology. The special types of matrices. Diagonal, triangular, and symmetric matrices. De-
scribe the properties for such matrices. The zero matrices and the identity matrices.
2. Unary matrix operations: scalar multiplication of matrices, transpose for a matrix. Describe the properties for such opera-
tions.
3. The binary matrix operations: matrix addition, matrix subtraction. Describe the properties of the matrix addition and the
scalar multiplication.
4. Multiplication of matrices. Properties of matrix multiplication.
5. Concept of a determinant. Evaluating determinants. Basic properties of determinants.
6. Minors and cofactors. Cofactor expansion. Determinant of a triangular matrix

7. Elementary row and column operations. Evaluating determinants by row reduction.
8. Inverse of a matrix. Theorem of inverse matrix. Properties of invertible matrices.

9. Methods for inverting matrices. Adjoint of a matrix. Inverse of a matrix using its adjoint. Calculation of inverse matrices by
elementary transformations.

10. Elementary matrices and row operations. Equivalence theorem.
11. The matrix rank. Calculation of rank using minors, calculation of rank by elementary transformations.
12. The system of linear equations. Consistent and inconsistent systems. General solution.

13. Kronecker—Cappelli theorem. Number of solutions for a linear system. Solving linear systems by the matrix inversion.
Cramer’s Rule.

14. Augmented matrices and elementary row operations. Echelon forms of matrices: row echelon and reduced row echelon form.
Elimination methods: Gauss—Jordan elimination and Gaussian elimination.

15. Homogeneous linear systems. Free variables in homogeneous linear systems. Fundamental system of solutions.
16. The vectors in three-dimensional space. The linear vector operations. The components of a vector.
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17. Rectangular orthogonal basis. Standard unit vectors. Decomposition of vectors into components.

18. Dot product. Properties of the dot product. A geometry problem solved using dot product. Applications of dot product.
Calculating with dot products.

20. Cross product. Properties of cross product. Geometric interpretation of cross product. Determinant form of cross product.
21. Scalar triple product. Calculating a scalar triple product. Geometric interpretation. Properties of scalar triple product.

22. Equation of a line on a plane and in space.

23. A straight line in space. Equations of a straight line in space.

24. Equations of a plane in space. Relative position of lines and planes.

25. General equation of second-order curves in the Cartesian coordinate system. Circle, ellipses, hyperbolas, parabolas, find-
ing the equations from some of its geometric properties.

26. Cylinders and quadric surfaces: cone, ellipsoid, hyperboloids, and paraboloids. Using traces to sketch the quadric surface.
Applications of quadric surfaces.

27. Complex numbers, arithmetic operations on complex numbers, roots of complex numbers.

28. Limits of numerical sequences. Properties of convergent sequences. The number e. The natural logarithm.

29. Functions. Limits of functions. Limits at infinity. Elementary properties of limits. Infinite simal and infinite large func-
tions.

30. Continuity of function at a point. Continuity of functions on an interval. Points of discontinuity and its classification.

31. Continuity of elementary functions. The most important limits. Properties of functions continuous on the closed interval.
32. The derivative of a function. The physical and geometrical concepts of the derivative.

33. Differentiation rules. Derivatives of composite functions: the chain rule.

34. Derivatives of basic elementary functions.

35. Derivatives of inverse functions, parametrically given function.

36. Implicit differentiation.

37. Logarithmic differentiation.

38. Higher derivatives. Higher-order differentials.

39. Rolle's theorem.

40. Lagrange’s theorem.

41. Cauchy's theorem.

42. L'Hopital's rule.
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43,
44,
45,

Taylor’s formula. Lagrange’s form of the remainder, Peano form of the remainder, Cauchy form of the remainder.
The Taylor expansions of the main elementary functions and its applications.
Increasing functions and decreasing functions.

46. Local extreme values. Extreme values of functions.
47. The first derivative theorem for local extreme values.

48.
49.
50.

51,
52,
53.
54,
55,

The second derivative test for local extreme values.

Concavity. The second derivative test for concavity. Points of inflection.

Asymptotes. Strategy for graphing y = f (x).

Vector-valued function. Derivatives of vector functions. Geometrical and mechanical meaning of a derivative.
The tangent line and the normal plane of a space curve.

Curvature of a plane curve. Radius of curvature.

The concept of the evolute and the involute.

The concept of the curvature and the torsion of a space curve.

The Exam Questions

Educational discipline “Mathematics-1”

1. The matrix notations and terminology. The special types of matrices. Diagonal, triangular, and symmetric matrices. Describe
the properties for such matrices. The zero matrices and the identity matrices.

2. Unary matrix operations: scalar multiplication of matrices, transpose for a matrix. Describe the properties for such operations.
3. The binary matrix operations: matrix addition, matrix subtraction. Describe the properties of the matrix addition and the scalar
multiplication.

4. Multiplication of matrices. Properties of matrix multiplication.

5. Concept of a determinant. Evaluating determinants. Basic properties of determinants.

6. Minors and cofactors. Cofactor expansion. Determinant of a triangular matrix

7. Elementary row and column operations. Evaluating determinants by row reduction.

8. Inverse of a matrix. Theorem of inverse matrix. Properties of invertible matrices.
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9. Methods for inverting matrices. Adjoint of a matrix. Inverse of a matrix using its adjoint. Calculation of inverse matrices by
elementary transformations.

10. Elementary matrices and row operations. Equivalence theorem.
11. The matrix rank. Calculation of rank using minors, calculation of rank by elementary transformations.
12. The system of linear equations. Consistent and inconsistent systems. General solution.

13. Kronecker—Cappelli theorem. Number of solutions for a linear system. Solving linear systems by the matrix inversion.
Cramer’s Rule.

14. Augmented matrices and elementary row operations. Echelon forms of matrices: row echelon and reduced row echelon form.
Elimination methods: Gauss—Jordan elimination and Gaussian elimination.

15. Homogeneous linear systems. Free variables in homogeneous linear systems. Fundamental system of solutions.

16. The vectors in three-dimensional space. The linear vector operations. The components of a vector.

17. Rectangular orthogonal basis. Standard unit vectors. Decomposition of vectors into components.

18. Dot product. Properties of the dot product. A geometry problem solved using dot product. Applications of dot product. Calcu-
lating with dot products.

20. Cross product. Properties of cross product. Geometric interpretation of cross product. Determinant form of cross product.
21. Scalar triple product. Calculating a scalar triple product. Geometric interpretation. Properties of scalar triple product.

22. Equation of a line on a plane and in space.

23. A straight line in space. Equations of a straight line in space.

24. Equations of a plane in space. Relative position of lines and planes.

25. General equation of second-order curves in the Cartesian coordinate system. Circle, ellipses, hyperbolas, parabolas, finding
the equations from some of its geometric properties.

26. Cylinders and quadric surfaces: cone, ellipsoid, hyperboloids, and paraboloids. Using traces to sketch the quadric surface.
Applications of quadric surfaces.

27. Complex numbers, arithmetic operations on complex numbers, roots of complex numbers.

28. Limits of numerical sequences. Properties of convergent sequences. The number e. The natural logarithm.

29. Functions. Limits of functions. Limits at infinity. Elementary properties of limits. Infinite simal and infinite large functions.
30. Continuity of function at a point. Continuity of functions on an interval. Points of discontinuity and its classification.
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31. Continuity of elementary functions. The most important limits. Properties of functions continuous on the closed interval.
32. The derivative of a function. The physical and geometrical concepts of the derivative.

33. Differentiation rules. Derivatives of composite functions: the chain rule.

34. Derivatives of basic elementary functions.

35. Derivatives of inverse functions, parametrically given function.

36. Implicit differentiation.

37. Logarithmic differentiation.

38. Higher derivatives. Higher-order differentials.

39. Rolle's theorem.

40. Lagrange’s theorem.

41. Cauchy's theorem.

42. L'Hopital's rule.

43. Taylor’s formula. Lagrange’s form of the remainder, Peano form of the remainder, Cauchy form of the remainder.
44. The Taylor expansions of the main elementary functions and its applications.

45. Increasing functions and decreasing functions.

a6. Local extreme values. Extreme values of functions.

a7. The first derivative theorem for local extreme values.

48. The second derivative test for local extreme values.

49. Concavity. The second derivative test for concavity. Points of inflection.

50. Asymptotes. Strategy for graphing

51. Vector-valued function. Derivatives of vector functions. Geometrical and mechanical meaning of a derivative.
52. The tangent line and the normal plane of a space curve.

53. Curvature of a plane curve. Radius of curvature.

54. The concept of the evolute and the involute.

55. The concept of the curvature and the torsion of a space curve.
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The list of books that are recommended for students
1. Calculus and analytic geometry. G. Thomas, R. Finnley, Addison-Wesley publishing company. 1998, 1281 pages.

2. Konspekt lectsii po vysshey mathematike. Polniy kurs. D. Pissmeniy. Airis-press, 2011. 606 pages. (in Russian)
3. Individualnie domashnie zadaniya po visshey mathematike. Part 1. VVysheyshaya shkola.1990, 271 pages. (in Russian)
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BELARUSIAN NATIONAL TECHNICAL UNIVERSITY

EDUCATIONAL PLAN
APPROVE

Vice Rector for Academic work Qualification: Engineer
Specialty 6-05-0713-05 Robotic systems Degree: Bachelor
Y. A. Nikolaychik Profiling: Industrial robots and robotic systems Duration of study: 4 years
o 2023 Form of education: full-time Recruitment 2023
Registration number [ account.
1.Schedule of the education process 11.Time budget summary (in weeks)
September October november December January February March April May June July August .
? & 1s(22|2e] 6 [ 13[20f27) 30| uTfzaf 0| 8 1S 22| 20 | sfiz|efze| 2 o [16]| 23 29| 16| 23 |hiny| & 13 (20 27 | 4 || aw 28] 1 g 15| 22 |20 6 1320|2713 10 17 4 = '—f ) "2 E 2 g
- 0% 10 12 0l 0z 03 04 06 07 5 £ = E £ c =
7|14 21| 28|05 12| 19| 26 (02| o | 16] 23| 30| T 1421|258 [ o4 Jurrf1s]2s|on| & [15) 22| oo g |os|2z| 290 | o5 | 12| 19 |26) 03 1o 17| 24 |3 7 ||z | 28 |os| 12 | 19|26 02| 9| 16 23 al = 3 g = | -
0 ele il 3 0 i 05 o7 08 lé 2 E e £
1 17 == o|o|=|=|=]|-= = = 34 # 2
17
u 7 =|= ; X | X | x| x|=|-= = = 14 E 4
1 7 == - X | X | X x|[=]|= = = 34 8 4
w 17 =|= f ‘ X X X X i / ‘ ! I 2 5 4 B 1 2
125 29 2 12 8 1

Designations: |_|Th.:um[iral training 0 | Educational practice { |Diploma design = |Holidays

DExam session X |Internship /i |Final examination
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111.Plan of the education process

Number of academic hours. Distribution by years and semesters
of them 1 year 1l year 11 year IV year
.
| semester, 17 weeks 2 semester, |7 weeks 3 semester, 17 weeks 4 semester, | T weeks 5 semester, 17 weeks 6 semester, 17 weeks T semester, 17 weeks # gemester, 6 weeks E -] E
5| ¢
Lo w | & = £ %
@ Name of the module, academic discipline, course [ E — 4 g In-class haurs In-class hours In-class hours In-class hours In-class hours In-clags howrs Ineclass houss Ineclass hours ® ._.!_ H
project (course work) L) E = » g E H g i
< s T H 5 - 5 5 ] = £
= ) B - & B z a H
= 8 H 3 el |k 2l e85 )28 sl gl gl |E HEII AR R gl el 2l & 3
- E % AR AN HERR IR HEREIE HER IFIEEHIERF IR I EAE AR IR I BRI IR HERR I :
z H HERR I S| 2 E|E HE i HE B2\ 28 E|2|Z|2|8 ¢ HE- i
£ g5 4 T E|z2|% H R ] E| £ 5|42 (2|2 |=5|49|2 (8| 2% 5|2 |E|2|=|% HEAEIE E
= = A = A = b EE N A =g |5 F = il = = Bl e = H
i B
£ £ i
1 |STATE COMPONENT 4n20 2022 H96 444 682 1018 | 192 | 172 | 168 | 27( 994 | 176 B4 | 192 | 2H| 740 156| 88 136 | 21| S38  206| 68 | 136 | 21 | 130 34 343 300 | W02 | 32 16 | 9 0%
11 |Social and humanitarian module -1
(BN Hi.ﬂlmy of Belarugian starchood 2z 108 54 6 15 108 | 36 1% 3 1 FMTHOL uc4 9
112 | Philosophy 4 108 54 16 18 108 | 36 18 3 3 FMTHDZ uc-4.8
113 |Modern political economy 1 108 54 6 18 108 | 36 1w |3 1 | FMTHSY uc.7
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Number of demic hours D by vears and
of them Iyear 11 year year IV year
1 semester, 17 weeks 2 semester, 17 weeks 3 semester, 17 weeks 4 semester, 17 weeks 5 semester, 17 weeks 6 semester, 17 weeks 7 semester, 17 weeks & semester, 6 weeks
: 3
w | o= i In-class Bours In-class hours In-class Bowrs In-class Bowrs In-class hoars In-class hours In-class hours In-class hours z H =
Name of the module, academic discipline, course g =l — 4 E = E H
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Module "Informatics and Computer Engineering”
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[Theoretical Foundations of Electronics 4 150 ts 4 16 16 I ENO R E R BRC-LT
Electronscs and circuitry 3 4 260 170 o [ 34 150 | 34| 34 1% R EEN R &
2 |Coursewark in the academic discipline w w . . FITRas BRC-1E
circuitry”
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design”
13 |Modale "T and equi
and equipment of robotic 3 ] 6 172 o3 6 o g | 34| 1s | s | o ase | sa | an| s | %
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271 [Languages and systems for programming industrial rabats 3 150 65 14 N 16 130 | 18 | 34| oae |3 5| FITRas SC-12
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mechanical enginee
28.1 [Network technologies T 158 B 34 34 18 138 | 34 | 34 18 |3 3 FITRA4% SC-14
RTC contral systems in mechanical engineering 18 00 156 2 51 42 v | 54| 54| 3 s ase| s s e | af e
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[Course work on the academic discipline "Program control of “ w . ,
the RTC in mechanical engineering”
Modeling and design of ETC in mechanical engineering ? 150 54 18 1% 1 [E TR TN TR 5
284 FITRAS | Ucs, SC.17
Coursewark on the academic discipline “Modeling and “ w . ,
design of RTC in mechanical engineering”
whots and robotic systems in
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2.10.3 [Physical Culture 0% 68 i 34 154 154 154 STFI1Y ve-1s
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112 [ Military training®* 2401360 MTF ve-s
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Undergraduate ] 4 &
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VI11.Competence matrix

E.-nl::?"'v Name of competence Module code, academic discipline
uc-1 Own the basics of research activities, search, analyze and synthesize information
uc-z Solve standard tasks of professional activity based on the use of i ion and hiol 131
uc-3 Communicate in a fereign language to selve problems of i I and i i 131
uC-4 Work in a team, tolerantly perceive social, ethnie, confessional, cultural and other differences LLL113E 210
uc.s Be capable of self- and imp in ional activities L&2, 1923;122222;33 284,
UC-6  |Show initiative and adapt to changes in professional activity 14.1,2.1.1
— Have the ability to analyze the economic systemn of society in its dynamics, the laws of its ing and in order te und d the factors of and devel d iona of soci ic systems, their ability to meet the needs of people, identify factors and mechanisms of political and socio- 112
i use iools of i analysis o assess the political process of ic decisi king and the i of ic policy
— ::::gm a modem culture of thinking, a ldview, an ical and i i itical style of cognitive, socio-practical and i activity, use the basics of ical k ledge inp | activities, ind. dentl imil. hil hical k ledge and build & ldview position on their 113
ucs To have the ability lo anial?'z? the processes of state building in different historical perieds, 1o identify factors and mechanisms of historical changes, 1o ine the socio-political signi of historical events ities, arifacts and symbels) for modern Belarusian statehood, o perfectly use the identified patemns in BRI
the process of forming civie identity
UC-10  [Have the ability to analyze political events, processes, relationships, use the culture of political thinking and behavier, use the basics of political science knowledge to form a culture of conscious and rational political choice, affirm socially oriented values 212
UC-11 [Use the basic concepts and terms of the special vocabulary of the Belarusian language in professional activities 132
—— To ha\'r.? the ahilil.y lo. their own ldvi 1 inciples at the .lc.w:] of the feat of the Belan gin.n people and l!u: higtnri::?l lessons Dflhl:. Gireat Pau.intic War, to preserve and_in?rl:asc the histerical memory of the role of the Soviet Union and its peoples in the Victory over German Nazism, o transmit to new 213
generations the historical truth and norms of behavior, values and tradi developed by the people during the period of overcoming the tragic events of the Great Patriotic War
UC-13  Use the means of physical culture and sports to maintain and promote health, prevent discases 2003, 2111
UC-14  |Analyze the theoretical and methodological found of the problem of the professional development of a person in the labor process 211
UC.15  |Know the specifics and patterns of development of world cultures. 211
UC-16  |Analyze various aspeets of modem political institutions, determine the ch istics and types of political systems 212
UC-17  (Use forms, technigues, methods and laws of intellectual cognitive activity in the professional field 212
UC-18  [Evaluate the main events and stages in history to form a helistic view of the development of science and technology 213
UC-19  |Possess the qualities of citizenship, understand the social danger of corruption 2101
BPC-1  |Use the basic laws of physics to solve applied il use ingi o analyze physical phenomena and processes 1.2
BPC-2 | Apply the analysis of methods for using the h ical of algebra, analytical g ry, dil ial and integral functions 1o solve applied engineering problems 122
BPC-3 | Apply the h ical of di i ies, integral functions of several variables to solve applied engineering problems 123
BPC-4 |Use the bagics of i | and energy inability of prods for their ication in ional activities 141
BPC-5  [Apply basic methods of ion and behavior in ituations and radiation hazards 1.4.2
BPC-6 | Apply basic health and safery rules wo prevent injury in the workplace 143
BPC-7  |Use the skills of reading and performing graphic materials and technical documentation when designing devices using ESKD standards to unify technical documentation 151
BPC-8  [Use knowledge about the basics of standardizing the accuracy and quality of products, apply practical skills in using measuring toels and devices when designing devices 152
BPC-9  [Use the isi of th: ical h: for the calculation of hanical systems in the design of devices L&
BPC.ID | Apply methods of analysis and synthesis of mechanisms to derive a mathematical iption of technical systems 16.2
Caleulate and develep the design of mechanisms and devices, taking into account the classification of the main parts and mechanisms of machines and devices for the unification of production processes 1.7.1
BPC-12  |Make a choice of basic structural and electrical materials in the design of mechanical structures 1.7.2
BPC-13  [Caleulate pants and structures for strength, rigidity and stability when designing devices 1.7.3
BPC-14  |Search, store and analyze information from various sources when compiling technical documentation, use the main methods of presenting information in the required format using information, computer and network technologies L&
Use knowledge about the device (composition) and the principle of operation of the hardware and system software of the computer when choosing the electrical components of devices, complete (upgrade) the computer, install its software 152
Use software and knowledge about one of the universal algorithmic p ing I when ereating the software of the designed device 183
Use the bagic principles and methods for caleulating the ch istics of electrical circuits and el ic fields for their use in production Lol
Make a choice of the element base of el i when designil lectrical systems of the designed device, use the skills of reading and developing electrical circuits when drawing up technical documentation ()
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Competency Name of competence Module code, academic discipline

code
BC-1 Use one of the universal packages of computer mathematics, one of specialized packages for statistical analysis, processing of tabular (matrix) information 221
802 Use the general principles of computer-aided design when creating devices, create various elements of the designed deviee in one of the modern svstems of th i ional solid-state graphic feling and design (CAD) 2212
SC-3 | Use methods for designi and robotic i analyze and select technological equipment 23
SC-4 Use the basics of i ics, methods for fucting a survey of production and regi of a feasibility study of the project when developing production 241
S5 Use standard hodologies for registering patent i i and ki pyrigh li 24z
SO Apply the designs of manipulators and working bodies of industrial robots in the design and calculation of the cl teristics of the hanical system of the robot 251
SC7 Caleulate the required characteristics of the electric drive of industrial robots and select technical means for creating an electric drive control system, develop electric drive control schemes 2512
BC-8 Caleulate the required ch istics of ic and hydraulic drives of industrial robots, select technical means for creating a control systern for pneumatic and hydraulic drives, develop control schemes for preumatic and hydraulic drives 253
SC-9 Use the methods of of control systems (ACS) when designing robots, use the skills of working in the batch modeling software for ACS MatLab Simuline 2.
SC10 |Use k ledge about the classi ion of modern rep ives of the cyelic, positional and contour systems of industrial robots during their eperation, diagnosis and repair 262
BC.11 Use knowledge of the main tvpes of sensors and electrical circuits for their connection to the control system of industrial robots, methods of caleulation and selection of wechnical means of the i i i | of industrial robots when designing robotic devices 2163
5C-12  Use one of the modern languages and systems for programming industrial robots when creating software, use methods for developing a control program when compiling it 2171
8C-13 Use the methods of mathematical apparatus to describe the position and trajectory of manipulators, use the system software of industrial robots when working in production 272
SC-14  [Design and operate industrial local area networks, taking into account the hardware and software of global and local computer networks 281,291
SC15  |Operate, diagnose, repair RTC conirol systems, create diagrams of RTC contrel sysiems in production 282,282
SC.16  |Use the basics of syntax and algorithmization in the 1S0-Thit CHNC programming language when creating a control program, create control pregrams in one of the PLC and mi 11 ing L 183,193
SC-17  [Use modern software systems for modeling production systems (Plant Simulation, AuteMOD er similar). apply simulation results to justify RTC projects 184,294
- 2102

SC-18 [Know the main provisions, state and global trends in the development of robotics

Developed on the basis of the educational standard in the specialty 6-05-0713-05 "Robotic systems" and an exemplary curriculum (registration No. 6-05-07-049 / pr. from 02/15/2023).

1 Differentiated credit.

2 When drawing up the curriculum of an educational institution in the specialty, the academic discipline "Fundamentals of Intellectual Property Management™ is planned as a discipline of a component
of an educational institution or a discipline of choice.
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