УДК 621.2.082.18, 620.178.143 ОЦЕНКА ПРОЧНОСТНЫХ ПАРАМЕТРОВ ПОВЕРХНОСТИ ПОКРЫТИЙ Zr(C)N Хабарова А.В.¹, Лапицкая В.А.^{1,2}, Кузнецова Т.А.^{1,2}, Вахолинский Б.³, Чижик С.А.^{1,2}, Гилевич А.³

¹Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси ²Белорусский национальный технический университет Минск, Республика Беларусь ³Кошалинский технологический университет Кошалин. Польша

Аннотация. Методом наноцарапания определен критический коэффициент интенсивности напряжений (K_{IC}) покрытий Zr(C)N. Покрытия осаждены на стальную подложку магнетронным методом при различной скорости потока ацетилена (от 0 до 6 см³/мин). Увеличение скорости потока ацетилена в камере от 0 до 1,5 см³/мин приводит к повышению критического коэффициента интенсивности напряжений на 18 %. Дальнейшее увеличение потока ацетилена до 6 см³/мин приводит к снижению критического коэффициента интенсивности напряжений, что коррелирует со снижающимися значениями физико-механических свойств и высокой шероховатостью поверхности.

Ключевые слова: покрытие Zr(C)N, магнетронное распыление, наноцарапины, коэффициент трения, критический коэффициент интенсивности напряжений.

ASSESSMENT OF STRENGTH PARAMETERS OF SURFACE Zr(C)N COATINGS Khabarava A.V.¹, Lapitskaya V.A.^{1,2}, <u>Kuznetsova T.A.</u>^{1,2}, Warcholinski B.³, Chizhik S.A.^{1,2}, Gilewicz A.³

¹A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus ²Belarusian National Technical University Minsk, Republic of Belarus ³Koszalin University of Technology Koszalin, Poland

Abstract. The critical stress intensity factor (K_{IC}) of Zr(C)N coatings was determined using the nanoscratch method. The coatings are deposited onto a steel substrate using the magnetron method at different acetylene flow rates (from 0 to 6 cm³/min). Increasing the acetylene flow rate in the chamber from 0 to 1,5 cm³/min leads to an increase in the critical stress intensity factor by 18 %. A further increase in the acetylene flow to 6 cm³/min leads to a decrease in the critical stress intensity factor, which correlates with decreasing values of physical and mechanical properties and high surface roughness.

Key words: Zr(C)N coating, magnetron sputtering, nanoscratches, friction coefficient, critical stress intensity factor. *Адрес для переписки: Хабарова А.В., ул. П.Бровки, 15, г. Минск, 220072, Республика Беларусь*

e-mail: AV.Khabarova@mail.ru

Введение. Покрытия ZrN имеют широкое практическое применение, поскольку представляют собой тугоплавкое соединение с хорошей химической и термической стабильностью, высокой твердостью и низким электрическим сопротивлением. Кроме того, в практическом применении, инструменты с покрытием ZrN показали значительные преимущества в производительности в сравнении с покрытием TiN во время испытаний на сверление [1].

Исследования покрытий ZrCN, нанесенных на стальную подложку методом магнетронного распыления, выявили высокие механические и трибологические характеристики [2], что является многообещающими результатами для возможности использования покрытий ZrCN в механических устройствах. Кроме того, покрытия ZrCN обладают хорошей биосовместимостью с организмом человека, что продемонстрировало их потенциал для медицинских устройств [3].

Сравнение характеристик ZrCN с более изученными покрытиями ZrN и ZrC [1–3], поддерживая идентичные экспериментальные условия, является актуальной задачей.

Целью работы является исследование прочностных параметров покрытий Zr(C)N, нанесенных при различной скорости потока ацетилена (P_{C2H2}) в камере, методом наноцарапания.

Материалы и методы исследований. Покрытия Zr(C)N толщиной 3 мкм нанесены методом магнетронного распыления на установке TINA-900. В качестве подложки использованы круглые пластины из быстрорежущей стали P6M5 толщиной 4 мм и диаметром 32 мм. Параметры нанесения покрытий: напряжение смещения на подложке – минус 10 В, скорость потока азота (N₂) в камере оставалась постоянной и составляла 4 см³/мин, скорость потока ацетилена (C₂H₂) варьировалась от 0 до 6 см³/мин.

Наноцарапины на покрытиях Zr(C)N наносили на наноинденторе Hysitron 750 Ubi при помощи алмазного индентора (радиус закругления 226 нм). На каждом образце выполнялось по три царапины длиной 5 мкм за 5 сек. Прикладываемая постоянная нагрузка составляла 1 мН.

Для интерпретации прочностных параметров покрытий используется два подхода – определение коэффициента трения *k*_{тр} и расчет критического коэффициента интенсивности напряжений K_{IC} [3] материала при наноцарапании.

Результаты исследований и обсуждения. Покрытия Zr(C)N, нанесенные при скорости потока ацетилена от 0 до 2 см³/мин, имеют высокие физико-механические свойства [4], ввиду чего проявляют лучшую стойкость к испытанию на царапание, малую глубину (до 5,2 нм) и ширину (до 19,5 нм) изношенной дорожки в сравнении с покрытиями ZrCN, нанесенными при большей скорости потока ацетилена – 3 и 6 см³/мин (глубина 8,8 и 16,2 нм, ширина 27,3 и 33,8 нм соответственно).

При проведении наноцарапания происходит непрерывная фиксация значений $k_{\rm rp}$. Испытания на покрытиях Zr(C)N показали возрастание коэффициента трения от 0,068±0,027 до 0,093±0,034 при увеличении скорости потока ацетилена от 0 до 2 см³/мин (рисунок 1). Скорость потока ацетилена 3 см³/мин приводит к снижению значения $k_{\rm rp} = 0,071\pm0,012$, на которое повлияла также низкая шероховатость поверхности [4]. При $P_{\rm C2H2} = 6$ см³/мин коэффициент трения составил 0,083±0,02.

Рисунок 1 – Коэффициент трения k_{тр} при наноцарапании покрытий Zr(C)N, нанесенных при различной скорости потока ацетилена

Расчет критического коэффициента интенсивности напряжений покрытий Zr(C)N на основе испытаний на наноцарапание (рисунок 2) показал, что повышение скорости потока ацетилена в камере от 0 до 1,5 см³/мин приводит к возрастанию значений критического коэффициента интенсивности напряжений на 18 % – от 327,85 до 386,76 МПа·м^{1/2}. Поток ацетилена в камере 2 и 3 см³/мин способствует снижению K_{IC} до 277,65 и 151,88 МПа·м^{1/2} соответственно. Самое малое значение $K_{IC} = 90,65$ МПа·м^{1/2} получено у покрытия ZrC, нанесенного при скорости потока ацетилена 6 см³/мин, что связано в том числе с наличием на поверхности крупных кристаллитов, которые могут препятствовать растрескиванию и дальнейшей декогезии (отслаиванию) покрытия, возникающей при больших деформациях [5].

Рисунок 2 – Критический коэффициент интенсивности напряжений K_{IC} при наноцарапании покрытий Zr(C)N, нанесенных при различной скорости потока ацетилена

Установлено, что лучшими прочностными параметрами обладает покрытие ZrCN, нанесенное при скорости потока ацетилена 1,5 см³/мин – $k_{\rm rp} = 0.072 \pm 0.039$ и $K_{\rm IC} = 386.76$ МПа·м^{1/2}.

Благодарности. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (гранты № Ф22М-006 и № Т21МС-029).

Литература

1. Microstructure and mechanical properties evaluation of cathodic arc deposited CrCN/ZrCN multilayer coatings / S.H. Huang [et al.] // Journal of Alloys and Compounds. – 2005. – Vol. 803. – P. 1005–1015.

2. Effect of Atmosphere During Deposition on the Morphology, Mechanical Properties and Microfriction of Zr-Based Coatings / T.A. Kuznetsova [et al.] // Advanced Materials Modelling for Mechanical, Medical and Biological Applications. Advanced Structured Materials. – 2021. – Vol. 155. – P. 271–319.

3. Effect of carbon content on nanostructural, mechanical and electrochemical characteristics of self-organized nc-ZrCN/a-CNx nanocomposite films / F. Zhou [et al.] // Applied Surface Science. – 2015. – Vol. 327. – P. 350–357.

4. Ulm, F.J. The scratch test for strength and fracture toughness determination of oil well cements cured at high temperature and pressure / F.J. Ulm, S. James // Cement and Concrete Research. – 2011. – P. 942–946.

5. Changjin, X. Cracking and decohesion of a thin Al₂O₃ film on a ductile Al–5%Mg substrate / X. Changjin, T. Wei // Acta Materialia. – 2005. – Vol. 53. – P. 477–485.