температура в зоне воздействия лазерного луча при одинаковой его плотности и, как следствие, микротвердость поверхности в месте действия луча по сравнению с участком с меньшей отражательной способностью.

Рис. 3. Зависимость микротвердости поверхности образца из сплава ВК6 от плотности энергии лазерного излучения при коэффициенте отражения R: 1 – 83 %; 2 – 59 %; 3 – 19 %

На основании выполненных исследований установлено, что, варьируя режимами лазерной обработки, можно, наряду с улучшением эксплуатационных показателей работоспособности поверхностей с переменным уровнем отражательной способности, добиться улучшения характеристик качества рабочих поверхностей твердосплавных деталей штампов.

УДК 621.9.048.7

О. Г. Девойно, А. Л. Кочеров, А. П. Пилипчук

МОДЕЛИРОВАНИЕ МНОГОМОДОВОГО ИЗЛУЧЕНИЯ ЛАЗЕРА КАК ЭТАП СИНТЕЗА ТЕХНОЛОГИИ ОПЛАВЛЕНИЯ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ

Белорусская государственная политехническая академия Минск, Беларусь

Комбинированная технология формирования износостойких покрытий, включающая газотермическое напыление порошковых материалов и последующее их оплавление лучом лазера, в настоящее время является одним из перспективных способов поверхностного упрочнения металлических деталей, позволяющим получить материалы с заранее заданными свойствами [1, 2]. На эффективность процесса лазерного оплавления существенное влияние оказывают параметры лазерного излучения (ЛИ) и, в частности, характер распределения энергии по сечению лазерного луча [2-4]. Однако, в большинстве известных работ, посвященных моделированию процесса лазерной обработки, рассматриваются упрощенные модели, что, естественно, приводит к большим погрешностям при численной реализации разработанных моделей.

Основу изучения тепловых полей, возникающих в обрабатываемой детали под воздействием ЛИ, составляет уравнение теплопроводности, которое может быть записано в виде [3]:

$$c\gamma(T)\frac{\partial T}{\partial t} + div\vec{W} = Q(x, y, z, t), \qquad (1)$$

где $\vec{W} = -\lambda(T)\overline{gradT}$ – тепловой поток;

сү – объемная теплоемкость;

λ – коэффициент теплопроводности;

Q(x, y, z, t) – объемная плотность тепловых источников.

Вполне очевидно, что точность расчета температурного поля обусловлена адекватностью модели (1). Здесь уместно заметить, что выявлению и учету особенностей правой части модельного представления (1) уделяется значительное внимание. Сюда следует отнести, в частности, учет температурной зависимости теплоемкости и теплопроводности обрабатываемых материалов. С другой стороны, учет особенностей пространственно-временной структуры теплового источника наталкивается на ряд существенных затруднений. Это в первую очередь относится к многомодовому режиму излучения лазера [2].

Для рассматриваемой задачи лазерной обработки Q(x, y, z, t) задается в виде граничного условия (например, при z=0) на поверхности обрабатываемой детали. Причем пространственная структура поверхностного источника тепла повторяет распределение интенсивности ЛИ I(x, y) по поверхности материала [2–4]. Наиболее распространенными аналитическими представлениями распределения интенсивности ЛИ являются равномерное и гауссовское, которые в случае многомодового излучения очень грубо и неточно описывают реальный поток мощности ЛИ и в силу этого не могут быть признаны адекватными.

Данное положение проиллюстрировано на рис. 1, где представлено экспериментальное нормированное одномерное распределение интенсивности ЛИ K(x) многомодового лазера «Комета-2». На рис. 1, кроме того, изображены равномерная R(x)и гауссовская G(x) аппроксимации, построенные в предположении

$$\int_{-\infty}^{\infty} K(x) dx = \int_{-\infty}^{\infty} R(x) dx = \int_{-\infty}^{\infty} G(x) dx$$

Для оценки ошибки аппроксимации будем использовать функционал

$$\psi[H] = \int_{-\infty}^{\infty} |K(x) - H(x)| dx \left(\int_{-\infty}^{\infty} K(x) dx \right)^{-1}, \qquad (2)$$

что дает $\psi[R] \approx 40,7\%$ и $\psi[G] \approx 55,8\%$ соответственно. Полученные оценки точности аппроксимации свидетельствуют о необходимости поиска новых способов аналитического описания распределения интенсивности излучения многомодового лазера.

Рис. 1. Экспериментальное распределение интенсивности ЛИ K(x), равномерная R(x) и гауссовская G(x) аппроксимации

Основной идеей решения сформулированной задачи является аналитическое представление моделей распределения интенсивности излучения многомодового лазера в виде многообразия сдвигов базисной функции.

Отправным пунктом предлагаемого представления являются работы американского ученого Н. Винера, развитые в дальнейшем советским математиком Н.И. Ахиезером [5, 6]. В этих работах доказана возможность аппроксимации произвольной функции K(x) математической конструкцией W(x, N) вида

$$W(x,N) = \sum_{n=1}^{N} A_n \cdot F(x - \lambda_n), \qquad (3)$$

которая, по сути, является линейным многообразием сдвигов базисной функции F(x). Данное аналитическое представление полностью определено вектором параметров, составленным из значений коэффициентов разложения

$$\left\{A_{n}\right\}_{N} = \left\{A_{1}, \dots, A_{N}\right\}$$

и величин соответствующих сдвигов

$$\left\{\lambda_n\right\}_N = \left\{\lambda_1, \dots, \lambda_N\right\}.$$

Особенностью полученных Винером доказательств является то, что процесс их получения существенно различается для пространства L_1 абсолютно суммируемых функций и пространства L_2 функций с суммируемым квадратом. Кроме того, отсутствуют процедуры вычисления параметров сдвиговых приближений, что делает малопригодным их практическое применение.

Если область определения \Re функции K(x) имеет бесконечную меру, то между двумя рассмотренными выше классами $(L_1 \ u \ L_2)$ не существует строгого отношения включения. Это приводит к ряду особенностей их практического применения. Физически это означает, в частности, что если амплитуда поля описывается функцией $K(x) \in L_1$, то поток мощности такого поля, описываемый интегралом от квадрата функции $(K^2(x))$, может быть бесконечным. Для того чтобы получаемые аналитические представления удовлетворяли закону сохранения энергии, определим класс допустимых функций L как множество суммируемых функций с интегрируемым квадратом, т.е.

$$\mathbf{L} = \mathbf{L}_1 \cap \mathbf{L}_2.$$

Такое определение наполняет параметры получаемых моделей физическим смыслом и, кроме того, позволяет продуктивно использовать и основные математические свойства пространств L_1 и L_2 , такие как теорему Планшереля, ограниченность интегралов, свойство Фурье преобразования функции пространства L и аксиому треугольника для метрик евклидова пространства L.

Идея построения доказательной базы основана на использовании теоремы об аппроксимации сверткой в трактовке Винера, которая выявляет условия, при которых произвольная свертка функций $A(x) \in L$ и $F(x) \in L$ сколь угодно близко приближается к аппроксимируемой функции $K(x) \in L$. Детали доказательства определяют условия, при которых сдвиговое приближение стремится к свертке и тем самым, в силу аксиомы треугольника сколь угодно близко приближается к $K(x) \in L$. Такие условия найдены. Они касаются выбора базисной функции разложения и способа построения сетки сдвигов, а именно:

 – Фурье-преобразование базисной функции может обращаться в нуль лишь на множестве конечной меры;

 – способ построения сетки сдвигов должен быть выбран так, чтобы при безграничном увеличении числа сдвигов максимальное расстояние между сдвигами асимптотически стремилось к нулю.

Выполнение этих условий обеспечивает возможность сколь угодно близкого приближения сдвигового многообразия (3) к аппроксимируемой функции $K(x) \in L$. Причем общей закономерностью является увеличение точности аппроксимации с ростом числа членов разложения (3).

В ходе построения доказательной базы получена вычислительная процедура нахождения коэффициентов разложения $\{A_n\}_N$ по результатам интегрирования обратного преобразования Фурье от частного Фурье преобразований исходной функции k(u) и базисной функции f(u):

$$A_{n} = \int_{\Omega_{n}} A(x) dx = \int_{\Omega_{n}} \mathfrak{S}^{-1} \{ \mathfrak{a}(\mathfrak{u}) \} dx = \int_{\Omega_{n}} \mathfrak{S}^{-1} \left\{ \frac{\mathfrak{k}(\mathfrak{u})}{\mathfrak{f}(\mathfrak{u})} \right\} dx, \ n = \overline{1, N},$$
(4)

где $\Im^{-1}{a(u)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a(u) \cdot e^{iux} du$ – оператор обратного преобразования

Фурье;

 Ω_n – элемент счетной непересекающейся системы областей $\{\Omega_n\}_N$, причем каждый элемент Ω_i содержит одну и только одну точку λ_i из сетки разложения $\{\lambda_n\}_N$ и $\Omega_i \cap \Omega_j = \emptyset$ для всяких $i \neq j$.

Практическое применение процедуры (4) часто наталкивается на значительные трудности, поэтому найдена вычислительная процедура, основанная на оценивании коэффициентов разложения по методу наименьших квадратов, которая позволяет определять наилучшее в смысле значения квадратической ошибки аппроксимации приближение. Применение данной вычислительной процедуры сводит нахождение коэффициентов разложения к решению линейного векторно-матричного уравнения. Данная процедура алгоритмична, а результаты вычислений определяют наилучшее (в смысле квадратичной ошибки) приближение [7]. Кроме того, можно показать, что сдвиговые модели (3) удовлетворяют свойству линейности.

Для решения уравнения теплопроводности (1) в качестве базисной функции *F(x)* разложения (3), на наш взгляд, предпочтительнее всего использование гауссовой функции. Данный выбор основывается на том, что гауссова функция удовлетворяет необходимому требованию к базисной (ее Фурье-преобразование не обращается в нуль на всей прямой), а кроме того, гауссоида является собственной функцией линейного стационарного уравнения теплопроводности. Поэтому в ряде случаев решение уравнения (1) можно находить как суперпозицию все тех же гауссовских функций.

В заключение приведем пример построения аналитической модели описанного выше экспериментального распределения многомодового ЛИ. В качестве базисной функции выберем гауссоиду

$$F(x) = \exp\left[-\left(\alpha \ x^2\right)/2\right],$$

где α – параметр формы кривой Гаусса.

Положим $\alpha = 100$ (вопрос параметризации базисной функции в данной статье детально не рассматривается). Для равномерной сетки сдвигов и N = 10 получим модель (3) с параметрами

$$\{\lambda_n\}_{10} = \{-0.9; -0.7; -0.5; -0.3; -0.1; 0.1; 0.3; 0.5; 0.7; 0.9\}; \\ \{\lambda_n\}_{10} = \{0.072; 0.395; 0.327; 0.467; 0.508; 0.264; 0.641; 0.143; 0.329; 0.027\}.$$

При этом точность аппроксимации составила $\psi \approx 13,6\%$; при числе сдвигов N = 20 точность $\psi \approx 9,8\%$, а при $N = 30 - \psi \approx 6,4\%$. На рис. 2 построено приближение W(x, 10) экспериментального распределения интенсивности ЛИ K(x).

Рис.2. Аналитическая модель W(x, 10) и базисная функция F(x).

Таким образом, описанный выше способ представления модели распределения интенсивности многомодового ЛИ позволяет более точно учесть особенности взаимодействия излучения и обрабатываемой поверхности. Тем самым повышается степень адекватности модели реальному процессу лазерного оплавления газотермических покрытий.

ЛИТЕРАТУРА

1. Хасуи А., Моригаки О. Наплавка и напыление / Пер. с яп. В.Н. Попова; Под ред. В.С. Степина, Н.Г. Шестеркина. – М.: Машиностроение, 1985. – 240 с. 2. Лазерная и электронно-лучевая обработка материалов: Справочник / Н.Н. Рыкалин, А.А. Углов, И.В. Зуев, А.Н. Кокора. – М.: Машиностроение, 1985. – 496 с. 3. Григорьянц А.Г. Основы лазерной обработки материалов. – М.: Машиностроение, 1989. – 304 с. 4. Процессы плазменного нанесения покрытий: Теория и практика / А.Ф. Ильющенко, С.П. Кундас и др.; Под ред. А.П. Достанко, П.А. Витязя. – Мн.: Научный центр исследований политики и бизнеса «Армита», – 1999. – 544 с. 5. Винер Н. Интеграл Фурье и его приложения / Пер. с англ. Н.Я. Виленкина. – М.: Физматтиз, 1963. – 256 с. 6. Ахиезер Н.И. Лекции по теории аппроксимации. – М.: Наука, 1965. – 407 с. 7. Кочеров А.Л. Способ определения оптимальных коэффициентов разложения при сдвиговой аппроксимации функций // Цифровая обработка информации и управление в чрезвычайных ситуациях: Материалы первой междунар. конф. / Ин-т техн. кибернетики НАН Беларуси. – Минск, 1998. – Т.1. – С.124-127.