
15 

UDC 004.4–004.9 

REVERSIBLE IF-DECISION DIAGRAMS 

Prihozhy A. A. 

Belarusian National Technical University, Minsk, Belarus, 

 prihozhy@yahoo.com 

 

All logical quantum circuits are reversible [1–7]. This paper introduces reversible 

if-decision diagrams for modelling, synthesis, optimization and verification of the 

quantum circuits. 

Reversible logical operations. Let x = (x1, …, xn) be a Boolean vector variable.  A sca-

lar Boolean function f(x) is a mapping Bn  B, B = {0, 1}. Let a vector Boolean function 

F(x) = (f1, …, fn): B
n  Bn is given by vector (x1, …, xi–1, f(x1, …, xn), xi+1, …, xn) of scalar 

functions f1 = x1, …,  fi–1 = xi–1, fi = f,  fi+1 = xi+1, …, fn = xn. In F(x), the number of components 

is equal to the number of variables. 

Definition 1. Boolean function f(x1, …, xn) of n arguments is n-reversible if an index 

i {1, …, n} exists such that the vector function F(x) = (x1, …, xi–1,  f(x1, …, xn), xi+1, …, 

xn) is bijective. 

Let analyze Boolean binary operations for reversibility. Boolean binary exclusive or 

operation is given by f = x1  x2. The truth table in fig. 1 proves that F = (x1, x1x2) is 

bijective and the  operation is 2-reversible. 

Inputs Outputs 

x1 x2 x1 x1x2 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

Figure 1 – Proof of 2-reversibility of Boolean binary exclusive or operation 

Boolean binary conjunction is given by f = x1  x2, and Boolean binary disjunction 

is given by f = x1  x2. The truth table in Figure 2a refutes the 2-reversibility of the 

conjunction as there are two input vectors which result in the same output vector. The 

truth table in fig. 2b refutes the 2-reversibility of the disjunction. 

Inputs Outputs 

x1 x2 x1 x1x2 

0 0 0 0 

0 1 0 0 

Inputs Outputs 

x1 x2 x1 x1x2 

0 0 0 0 

0 1 0 1 



16 

1 0 1 0 

1 1 1 1 
 

1 0 1 1 

1 1 1 1 
 

a) b) 

Figure 2 – Refutation of 2-reversibility of: a – Boolean conjunction and b – Boolean disjunction 

Let check the most important three ternary Boolean operations for 3-reversibility: the 

if-then-else (ite) operation; the majority (maj) operation, and the xor-and-accumulation 

(xac) operation. The ternary xor operation is a composition of two binary xor operations; 

therefore, it is 3-reversible. 

The ite(x1, x2, x3) operation is given by ite = x1x2  x1x3. Its arguments are not 

symmetric; therefore, we consider two cases. Two truth tables in fig. 3 refute the operation 

to be 3-reversible. In case 1, when ite is substituted instead of the first variable x1, input 

vectors (0, 0, 0) and (1, 0, 0) result in the same output vector (0, 0, 0), and input vectors (0, 

1, 1) and (1, 1, 1) result in the same output vector (1, 1, 1), therefore, F = (ite(x1, x2, x3), x2, x3) 

is not bijective and ite is not 3-reversible. In case 2, when ite is substituted instead of the 

second argument x2, input vectors (0, 0, 0) and (0, 1, 0) result in output vector (0, 0, 0), and 

input vectors (0, 1, 1) and (1, 1, 1) result in output vector (1, 1, 1). Therefore, function 

F = (x1, ite(x1, x2, x3), x3) is not bijective and function ite is not 3-reversible.  

Inputs Outputs 

x1 x2 x3 ite x2 x3 

0 0 0 0 0 0 

0 0 1 1 0 1 

0 1 0 0 1 0 

0 1 1 1 1 1 

1 0 0 0 0 0 

1 0 1 0 0 1 

1 1 0 1 1 0 

1 1 1 1 1 1 
 

Inputs Outputs 

x1 x2 x3 x1 ite x3 

0 0 0 0 0 0 

0 0 1 0 1 1 

0 1 0 0 0 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 0 

1 1 1 1 1 1 
 

a) b) 

Figure 3 – Refutation of 3-reversibility of Boolean ternary ite operation:  

a – F = (ite(x1, x2, x3), x2, x3); b – F = (x1, ite(x1, x2, x3), x3) 

The maj operation is given by maj = x1x2  x1x3  x2x3. Since all three argu-

ments are symmetric, fig. 4 describes the truth table of function F = (maj(x1, x2, 

x3), x2, x3), which completely checks the 3-reversibility of maj. It can be noticed that 



17 

each of two pairs of input vectors is mapped to the same marked output vector, there-

fore the F is not bijective and the maj is not 3-reversible. 

Inputs Outputs 

x1 x2 x3 maj x2 x3 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 1 1 1 

1 0 0 0 0 0 

1 0 1 1 0 1 

1 1 0 1 1 0 

1 1 1 1 1 1 

Figure 4 – Refutation of 3-reversibility of Boolean ternary maj operation with  

F = (maj(x1, x2, x3), x2, x3) 

The xac operation is given by xac = x1  (x2x3). The truth table of fig. 5a proves 

that function F = (xac(x1, x2, x3), x2, x3) is bijective and therefore operation xac is 3-

reversible. It is interesting that xac is not reversible for F = (x1, xac(x1, x2, x3), x3). 

Among the considered three ternary Boolean functions, xac is the only reversible one. 

Inputs Outputs 

x1 x2 x3 xac x2 x3 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 1 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 0 

1 1 1 0 1 1 
 

Inputs Outputs 

x1 x2 x3 x1 xac x3 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 0 0 

0 1 1 0 1 1 

1 0 0 1 1 0 

1 0 1 1 1 1 

1 1 0 1 1 0 

1 1 1 1 0 1 
 

a) b) 

Figure 5 – Check of 3-reversibility of Boolean ternary xac operation: a – it is 3-reversible with 

F = (xac(x1, x2, x3), x2, x3); b – it is not 3-reversible with F = (x1, xac(x1, x2, x3), x3) 



18 

Definition 2. Function f(x1, …, xn) is n+1-reversible if for function f’(x1, …, 

xn, c) = f(x1, …, xn) of n+1 arguments, where c = 0 or c = 1, the vector function F  =  (x1, 

…, xn,  f’(x1, …, xn)) is bijective. 

Above we have proved that the binary Boolean conjunction is not 2-reversible. 

Let check if it is 3-reversible. To do this, we write down x1  x2 = xac(0, x1, x2) and 

F = (xac(0, x1, x2), x1, x2). The truth table in Figure 6 that contains four value rows 

proves that the F function is bijective and the binary conjunction is 3-reversible. 

Inputs Outputs 

0 x1 x2 xac(0, x1, x2) x1 x2 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 1 1 1 

Figure 6 – Proof of 3-reversibility of binary Boolean conjunction using F = (xac(0, x1, x2), x1, x2) 

Binary Boolean disjunction is not 2-reversible. Let check if it is 3-reversible. To 

do this, we write down x1  x2 = xac(0, x1, x2) x1  x2 and F  =  (xac (0, x1, x2) 

x1x2, x1, x2). The truth table with four value rows in fig. 7 proves that the F function 

is bijective, and the binary disjunction is 3-reversible. 

Inputs Outputs 

0 x1 x2 xac(0,x1,x2)x1x2 x1 x2 

0 0 0 0 0 0 

0 0 1 1 0 1 

0 1 0 1 1 0 

0 1 1 1 1 1 

Figure 7 – Proof of 3-reversibility of Boolean binary disjunction using 

F = (xac(0, x1, x2)x1x2, x1, x2) 

The 4-reversibility of the ite and maj ternary operations can be proved in a similar 

way. A superposition of the Boolean exclusive or, xor-and-accumulation, and constants 

1 and 0 operations constitute a basis for describing any reversible Boolean function with 

the same or increased number of input and output variables. If the function of n arguments 

is n-reversible it can be directly described in the basis, otherwise a function extension can 

be constructed with additional arguments (ancillas). Searching for an extension with 

a minimal number of ancillas is a subject of optimization. 



19 

Let a function of n arguments that is not n-reversible in general case be given by f(x1, 

…, xn). To find its representation or to transform it to a good quality reversible function, 

various expansions can be examined. In the paper we focus on decision diagrams. The most 

famous is the Binary Decision Diagram (BDD). Several BDD types are known, including 

complete, free, ordered, reduced diagrams [8–9]. A Reduced Ordered BDD (ROBDD) is 

a model for solving such problems as modelling, synthesis, test generation, and verification 

of digital systems, which are implemented as electronic, quantum or other circuits. Figure 

8a depicts a BDD’s nonterminal node. It is labeled with Boolean variable xi and has two 

outgoing edges labeled low and high and leading to daughter sub-diagrams g and h. The 

Shannon expansion [10] defines the node semantics with the equation 

𝑓 = 𝑥𝑖 ∧ 𝑔 ∨ 𝑥𝑖 ∧ ℎ (1) 

where h = fxi=0 and g = fxi=1 are residual functions called positive and negative cofactors 

respectively.  

Works [8, 9] generalized the Shannon expansion to 

𝑓 = 𝑐 ∧ 𝑣 ∨ 𝑐 ∧ 𝑢 (2) 

where c is an arbitrary Boolean function of n arguments, v = min (f | c), u = min (f | c) 

and min (f | c) is a minimization operation of function f over characteristic function c. 

Expansion (2) defines the semantics of a nonterminal node of the If-Decision Diagram 

(IFD) [11, 12] depicted in fig. 8b. It is easy to see that (1) and (2) use the ite ternary 

operation, which is not 3-reversible, therefore the BDD and IFD are not reversible-

style representations.  

  

a) b) 

Figure 8 – Nonterminal node of: a – binary decision diagram; b – if-decision diagram 

The positive and negative Davio [13] expansions (3) and (4) of Boolean function 

f(x) are derived from the Shannon expansion (1): 

𝑓 = ℎ  𝑥𝑖 ∧ 𝑒 (3) 

𝑓 = 𝑔  𝑥𝑖 ∧ 𝑒 (4) 

 

where e = 𝑔ℎ. To prove (3), we equivalently transform it to (1) in the way as follows: 

f = h  xi  (g  h) =  



20 

= (h  (xi  (g  h)))  (h  xi  (g  h)) =  

= (h  (xi  (g  h)))  (h  xi  g  h) =  

= (h  xi  h  (g  h))  (xi  g  h) =  

= (xi  h)  (g  h)  (xi  g  h) =  

= (xi  g)  (xi  h)   

Equation (4) can be proved in the similar way. Based on (2), the author of works 

[14, 15] developed the following xor-based expansions: 

𝑓 = 𝑢  𝑐 ∧ 𝑤 (5) 

𝑓 = 𝑣  c ∧ 𝑤 (6) 

 

where c is an arbitrary Boolean function of n arguments and w = 𝑣𝑢. Expansions (5) 

and (6) generalize the positive and negative Davio expansions (3) and (4). Their proof 

is like the proof of (3). 

Expansions (3) and (4) lie in the basis of creating positive pFDD (fig. 9a) and 

negative nFDD (fig. 9b) functional decision diagrams respectively. Expansions (5) and 

(6) constitute a basis for creating positive pFIFD (fig. 9c) and negative nFIFD (fig. 9d) 

functional if-decision diagrams respectively [16–20]. Since pFIFD and nFIFD provide 

much larger possibilities for modelling logical functions due to replacing a variable xi 

with an arbitrary logical function c, they are more suitable for modelling logical sys-

tems and for the design automation. 

  

a) 

 

b) 

 

  

c) d) 

Figure 9 – Nonterminal node of: a – pFDD; b – nFDD; c – pFIFD; d – nFIFD 



21 

In case, when all three input variables are essential in any of the ternary Boolean 

operations defined by (3)–(6), and due to the operations’ 3-reversibility (in fact these 

are the xor-and-accumulation Boolean ternary operation), we call the decision dia-

grams pFDD, nFDD, pFIFD and nFIFD reversible. In the case, no additional variables 

(ancillas) are needed. When one or two of three variables are unessential, the functions 

describe binary or unary operations. If the binary operation is 3-reversible (like Bool-

ean conjunction or disjunction), an ancilla is needed. If the unary operation is 2-reversi-

ble (like Boolean negation) an ancilla is needed too. Fig. 10 depicts pFIFDs represent-

ing Boolean inversion, exclusive or, conjunction, and disjunction. Only one ancilla is 

needed for numerous inversions within a single pFIFD. Contrary, every conjunction or 

disjunction requires its own additional ancilla, therefore the operations are of high cost.  

  

 

b) 

 

 

a) 

 

 

c) d) 

Figure 10 – Reversible pFIFDs of: a – inversion, b – exclusive or, c – conjunction; d – disjunction 

Conclusion. The paper has introduced reversible if-decision diagrams as a model for 

synthesis, optimization and verification of logical quantum circuits. It has performed the 

analysis of reversibility of basic unary, binary, and ternary Boolean operations, and has 

shown that the binary exclusive-or and ternary xor-and-accumulation operations do not 

need ancillas. Any Boolean function can be represented by a superposition of the opera-

tions with or without ancillas. The operations allow the construction of reversible if-deci-

sion diagrams, which extend the functional decision diagrams. 

 



22 

References 

1. Nielsen M., Chuang I. L. Quantum computation and quantum information. 

Cambridge: Cambridge University Press; 2000. – 700 p. 

2. Sasanian Z., Wille R., Miller D. M. Realizing reversible circuits using a new 

class of quantum gates. In: Groeneveld P, editor. The 49th Annual design automation 

conference 2012; 2012 June 3–7; San Francisco, USA. New York: Association for 

Computing Machinery; 2012. – 36–41 p. 

3. Smith, K. Technology-dependent quantum logic synthesis and compilation 

[dissertation] [Internet]. Dallas: Southern Methodist University.Available from: 

https://scholar.smu.edu/engineering _electrical _etds/30. 

4. Prihozhy, A. A. Synthesis of quantum circuits based on incompletely speci-

fied functions and if-decision diagrams, Journal of the Belarusian State University. 

Mathematics and Informatics, 2021, Volume 3. – 84–97 p.  

5. Prihozhy, A. A. Modelling reversible circuits by if-decision diagrams. VIII 

Международная научно-техническая интернет-конференция «Информационные 

технологии в образовании, науке и производстве», 21–22 ноября 2020 года [Элек-

тронный ресурс] / Белорусский национальный технический университет. – 

С. 163–168.  

6. Zulehner A., Niemann P., Drechsler R., Wille R. Accuracy and Compactness 

in Decision Diagrams for Quantum Computation. Design, Automation and Test in Eu-

rope Conference – DATE, 2019. – 280–283 p. 

7. Lukac M., Kameyama M., Perkowski M., Kerntopf P. Minimization of quan-

tum circuits using quantum operator forms. arX-ib: 1701.01999.  

8. Lee, C. Y. Representation of Switching Circuits by Binary-Decision Programs 

/C.Y. Lee //Bell Systems Technical Journal, 1959, Vol. 38, No 4. – 985–999 p. 

9. Bryant, R. Graph-based algorithms for Boolean function manipulation / 

R. Bryant, // IEEE Trans. on Comp. 35. – 677–691 p. 

10. Shannon, C. E. The Synthesis of Two Terminal Switching Circuits. Bell Sys-

tem Technical Journal. – Vol. 28. –1949. – № 1.– 59–98 p. 

11. Прихожий, А. А. Частично определенные логические системы и алго-

ритмы / А.А. Прихожий // Минск, БНТУ. – 2013. – 343 с. 

12. Прихожий, А. А. Обобщение разложения Шеннона для частично опре-

деленных функций: теория и применение. Системный анализ и прикладная ин-

форматика. – 2013, № 1–2. – С. 6–11. 

13. Davio M., Deschamps J. P., Thayse A. Discrete and Switching Functions. 

New York: McGraw-Hill, 1978. – 729 p. 

14. Прихожий, А. А. Новые разложения булевых функций по операции ис-

ключающее или в системах логического проектирования. Системный анализ              

и прикладная информатика. – 2014, № 1–3. – 9–16 c. 

15. Prihozhy, A. A. If-Diagrams: Theory and Application. Proc. 7th Int. Workshop 

PATMOS’97. – UCL, Belgium, 1997. – 369–378 p. 

16. Prihozhy A. A., Brancevich P. U. Parallel Computing with If-Decision-Dia-

grams Proc. Int. Conference PARELEC’98. – Poland, Technical University of Bi-

alystok. – 1998. – 179–184 p. 

https://scholar/
https://www.aminer.cn/pub/5ce3cd34e1cd8e3f7932b9f7/accuracy-and-compactness-in-decision-diagrams-for-quantum-computation
https://www.aminer.cn/pub/5ce3cd34e1cd8e3f7932b9f7/accuracy-and-compactness-in-decision-diagrams-for-quantum-computation


23 

17. Prihozhy, A. A. If-Decision Diagram Based Synthesis of Digital Circuits. In-

formation Technologies for Education, Science and Business, Minsk, Belarus. –1999. 

– 65–69 p.  

18. Prihozhy, A. A., Becker, B. If-Decision Diagram Based Modeling and Syn-

thesis of Incompletely Specified Digital Systems. Electronics and communications, 

Special Issue on Electronics Design. – 2005. – 103–108 p. 

19. Prihozhy, A. A. High-Level Synthesis through Transforming VHDL Models 

/ A. A. Prihozhy // Chapter in Book “System-on-Chip Methodologies and Design Lan-

guages”. – Kluwer Academic Publishers. – 2001. – 135–146 p. 

20. Prihozhy, A. A. Synthesis of parallel adders from if-decision diagrams. Sys-

tem Analysis and Applied Information Science. – 2020. – No 2. – 61–70 p.  

  


