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In this paper, we studied the conditions for global solvability and 

unsolvability of a nonlinear filtration equation 
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and initial value condition 
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where 01 1/ , , 0, ( ) , , ( )np m q x x n R u x       – bounded,

continuous, non-negative and non-trivial initial data. 

Equation (1) occurs in various areas of natural science [1, 3–5]. For 

example, equation (1) is considered in mathematical modeling of the thermal 

conductivity of nanofluids, in the study of problems of fluid flow through 

porous media, in problems of the dynamics of biological populations, polytropic 

filtration, structure formation in synergetics and nanotechnologies, and in a 

number of other areas [1–4]. 

Equation (1) is called a parabolic equation with variable density [1] and in 

case 
( 1) 1 0m p   

corresponds to the equation of slow filtration [2-3]. 

Problem (1)–(3) has been intensively studied by many authors (see [2, 6–17] and 

references therein) for various values of numerical parameters. 

In [17], the authors, considering problem (1)-(3) in the case 

1, ( ) 1m x 
, proved that for 0 1   and ( 1)(2 ) / ( )q p n p n     any non-

trivial solution of problem (1)-(3) is global. If 1   and ( 1)(2 ) / ( )q p n p n    ,

then each solution of problem (1)-(3) is unbounded in a finite time. 
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In work [5], the condition of global unsolvability in time of the solution of 

the Cauchy problem for equation (1) at was obtained that 
1, ( ) 1m x 

 and

the critical exponent of the Fujita type 
2 1p  

 was established.

Some properties of solutions to problem (1)–(3) at 
( ) 1, 1x m  

were 

studied in [9]. They obtained the critical exponent of the global existence of the 

solution and the critical exponent of the Fujita type by constructing the lower 

and upper solutions. 

In [7], the unboundedness of the solution of the following reaction-

filtration model with a nonlinear boundary condition was studied 
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where 
NR  is the bounded area. The authors showed that all positive 

solutions exist globally in the case 1m   if and only if 
, 1q 

, and in the case

1m   when 
1, 2 / ( 1)q m m   

.

As is known, degenerate equations may not have classical solutions. 

Therefore, its solution is understood in a generalized sense. 

Definition 1. A function is called a weak solution to problem (1)-(3) at 

{ (0, )}R T 
, if 
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, and if it satisfies 

(1)–(3) in a generalized sense at  , where 0T   is the maximum lifetime. 

1. Main results

Below, we will determine the condition of solvability and unsolvability in 

general in terms of time for solving problem (1)–(3) in the case of slow 

filtration. It is assumed that 
1 1 /p m 

.

Theorem 1. If 

(1 ) 1
( 1)

m n
q p

p n

 
 

 and0 1   , then any solution to

problem (1)–(3) is global. 

Remark 1. Theorem 1 shows that the critical exponent of the global 

existence of a solution to problem (1)–(3) is equal to 
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Theorem 2. If 1   and 

( (1 ) 1)( 1)

( )

m n p
q

p n

  


 , then the solution of 

problem (1)–(3) is unbounded in a finite time. 

Theorem 3. If 
2 1p  

 and 
( 1)( 1) / ( )q p m mn p n    

, then the

solution of problem (1)–(3) is unbounded in a finite time. 

Theorems 1-3 are proved in the same way as in [13, 16]. 
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ИНВЕСТИЦИОННОЙ ПРОГРАММЫ ПРИ ЗАДАННЫХ БЮДЖЕТЕ 

И ПРОГРАММЕ ПРОИЗВОДСТВА 

И.З. Худайбердиев 
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   При вложении инвестиций в реальную экономику банкам и другим 

инвесторам целесообразно учитывать не только инвестиционную 

программу, но и финансовую, производственно-хозяйственную и 

социально-экономическую деятельность предприятию. Поэтому  лицо 

принимающих решение (ЛПР) и его команде интересно исследовать 


