УДК 681.2.082:531.45

ТРЕНИЕ КАЧЕНИЯ НА СТАЛИ С АКРИЛОВЫМ ПОКРЫТИЕМ Ризноокая Н.Н., Пантелеев К.В., Микитевич В.А., Касьмин В.Ю., Красневский Д.Ю.

Белорусский национальный технический университе Минск, Республика Беларусь

Аннотация. Проведены измерения моментов трения качения стальных шариков по стальной поверхности и по поверхности из стали с акриловым покрытием. Полученные результаты показали существенные отличия формы кривых моментов трения качения для разных пар трения.

Ключевые слова: трение качения, сталь с акриловым покрытием, момент рения качения, предварительное смещение.

ROLLING FRICTION ON ACRYLIC COATED STEEL Riznookaya N., Pantsialeyeu K., Mikitsevich U., Kasmin V., Krasnevskiy D.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. The rolling friction moments of pairs steel-steel and steel- steel with an acrylic coating were measured. The results showed significant differences in the shape of the rolling friction moments curves for different friction pairs.

Key words: rolling friction, steel with an acrylic coating, rolling moment, pre-displacement.

Адрес для переписки: Н.Н. Ризноокая, пр. Независимости, 65, Минск 220113, Республика Беларусь e-mail: Riznookaya@bntu.by

Одной из величин, характеризующих физикомеханические свойства поверхности материалов является коэффициент трения качения. Данный коэффициент носит интегральный характер и в режиме предварительных смещений мало информативен. Ранее авторами были разработаны оригинальные средства и методики измерения моментов трения качения шариков на плоской поверхности в условиях, когда смещение шариков существенно меньше диаметра пятна контакта [1, 2]. Принцип действия устройства основан на измерениях амплитуд свободных затухающих колебаний маятника, опирающегося шариком на плоскую поверхность.

Целью данного исследования являлось исследование моментов трения пар трения с разными показателями твердости.

Момент сил сопротивления качению. В соответствии с [2], было высказано предположение, что момент сил сопротивления качению можно представить, как результирующее воздействие двух моментов: $M_{fr}(\phi)$ — «диссипативного» связанного с силами адгезии при разрыве и внутреннем трении в материале и $M_{el}(\phi)$ — адгезионного, при котором силы адгезии «не рвутся».

$$\begin{split} M(\varphi) &= M_{fr} + M_{el}(\varphi) \approx \\ &\approx \left[-mgR(c + b\varphi^p)sign\left(\frac{d\varphi}{dt}\right) \right] + \\ &+ \left[2\gamma a^2 R |\varphi|^{n+1} \left(\frac{\pi}{2} - \frac{R}{a}\varphi\right) \cdot sign(\varphi) \right] \end{split} \tag{1}$$

где ϕ — угол отклонения маятника от положения равновесия, m — масса маятника; g — ускорение свободного падения; R — радиус шарика; c, b, p — параметры аппроксимации, определяемые из экс-

периментальной зависимости амплитуды от времени, a — радиус пятна контакта; γ , n — параметры аппроксимации, определяемые из экспериментальной зависимости периода от амплитуды, причем параметр γ характеризует давление сил адгезии, действующее между поверхностью шарика и исследуемой поверхностью [3].

Используя эти уравнения в качестве уравнений регрессии для аппроксимации соответствующих зависимостей, полученных на эксперименте, можно определить численное значение параметров аппроксимации.

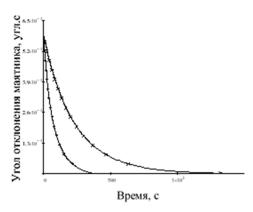
Зависимость $M_{el}(\varphi)$ позволяет построить скелетную кривую и зависимость $M_{fr}(\varphi)$ – построить петлю гистерезиса вокруг скелетной кривой.

Результаты измерений и расчетов. В экспериментах использовался маятник массой 0,4 кг, в котором в качестве опоры использовался шарик радиусом $R=6{,}05$ мм, выполненный из стали ШХ15 (Ra=63 нм, $E_{st}=2{,}11{\cdot}10^{11}$ H/м², $v_{st}\approx0{,}28$).

Исследовались 2 образца. Первый образец представляет собой плоскую полированную пластину из стали 08ПС. Физико-механические свойства стали 08ПС указаны в табл. 1.

Таблица 1. Физико-механические свойства стали 08ПС

НВ	$\sigma_{\scriptscriptstyle B,}$	σ _{0,2,}	$E 10^{-5}$,	$G 10^{-5}$,
	МПа	МПа	МПа	МПа
98	365	175	2,03	0,74


Второй образец представлял собой плоскую полированную пластину из стали 08ПС покрытую акриловым лаком KU-9010. Состав: модифицированная акриловая смола, функциональные добавки, бутиловый спирт, метилацетат, ксилол, пропан, бутан, диметиловый эфир.

Физико-механические свойства акрилового лака указаны в табл. 2.

Таблица 2. Физико-механические свойства акрилового лака

Твердость пленки по маятниковому прибору	0,3
М-3, по ГОСТ 5233-89, усл. ед., не менее	
Прочность покрытия при прямом ударе на	40
приборе У-1, ГОСТ 4765-73, см, не менее	

На каждом из представленных образцов проводили по 3 измерения в трех точках. Зависимости амплитуды колебаний маятника от угла отклонения маятника для пары сталь-сталь с акриловым покрытием, представлена на рис. 1.

 $xxx-для \ пары \ сталь-сталь; \\ +++-для \ пары \ сталь-сталь \ с \ акриловым \ покрытием$

Рисунок 1 — Зависимость амплитуды колебаний маятника от угла отклонения маятника (усредненное значение по 3 точкам)

В табл. 3 представлены результаты измерений.

Таблица 3. Результаты измерений

Пара	Пара
сталь —	сталь – сталь
сталь	с акриловым
	покрытием
9	136
0,012	0,176
1,071	1,247
3,39	2,20
58,2	15,6
0,3126	0,3021
52	155
33	133
1.06.	3,45
1,00	3,43
37,2	68,4
6,11	21,44
5,26	17,72
11,37	39,16
	9 0,012 1,071 3,39 58,2 0,3126 53 1,06 37,2

На рис. 2 и 3 представлены графики зависимости моментов сил сопротивления качения от угла

отклонения маятника в пределах одного цикла качания с амплитудой 10 угл. с, построенные по формуле (1).



Рисунок 2 – График зависимости момента сопротивления качения (в единицах $\mathrm{HH}\cdot\mathrm{m}$) от угла отклонения маятника (в единицах угл. с) для пары сталь – сталь с акриловым покрытием

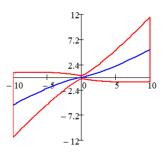


Рисунок 3 – График зависимости момента сопротивления качения (в единицах $\mathrm{H}^{1}\mathrm{M}$) от угла отклонения маятника (в единицах угл. с) для пары сталь — сталь

Заключение. Представленные результаты подтверждают универсальность маятникового метода. Однако приведенные числовые значения для коэффициентов аппроксимации, определяемые для акрилового покрытия являются весьма приблизительными, так как при расчете следует учитывать модули Юнга и сдвига материалов, а стандартные сведения для акрилового лака отсутствуют. Наиболее информативными в данном случае являются поверхностная плотность сил адгезии на отрыв и параметр у характеризует давление сил адгезии, действующее между поверхностью шарика и исследуемой поверхностью.

Литература

- 1. Джилавдари, И. 3. Устройство и методика измерения моментов сил сопротивления качению на пятне контакта / И. 3. Джилавдари, С. Мекид, Н. Н. Ризноокая // Приборы и методы измерений. 2019. Т. 10, №. 4. С. 308—321.
- 2. Gilavdary, I. A new theory on pure pre-rolling resistance through pendulum oscillations / I. Gilavdary [et al.] // Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2013. Vol. 227, №. 6. P. 618–628.
- 3. Popov, V. L. Contact mechanics and friction: Physical Principles and Applications / V.L. Popov. Berlin: Springer, Berlin, Heidelberg, 2017. P. 231–253.