резервуаром. Исходные данные для расчета маслораспылителей: диапазон расхода количество подаваемого воздуха; масла; давление; присоединительные размеры; требования к стабильности подачи масла. Кроме того, накладываются требования по снижению энергопотерь, обеспечению прочности, по классу загрязнен-ности сжатого воздуха, классу чистоты масла и ресурсу. Порядок расчета маслораспылителей: выбирается способ регулирования подачи масла; затем по максимальной требуемый величине подачи определяется перепад маслопроводе, проходная площадь сечения сопла, вместимость резервуара, характеристики корректирующего устройства. После разрабатывается конструкция маслораспылителя. По полученным результатам осуществляется проверочный расчет в следующем порядке: определяется скорость сжатого воздуха при минимальном расходе его, давления между входом И соплом маслораспылителя; перепад гидравлическое сопротивление маслопровода; изменение уровня масла в резервуаре; коэффициенты уменьшения подачи масла и сопротивление маслораспылителя. Данные, полученные при проверочном расчете, должны соответствовать исходным.

УДК 519

Моделирование процессов разведки при использовании беспилотных летательных аппаратов

Градобоев Ф.Г., Никитин А.С., Пилипчук А.П., Шевченко В.С. Военная академия Республики Беларусь

Масштабы и уровень решения новых сложных задач, стоящих перед военной наукой и практикой, требуют привлечения новых методов кибернетики и исследования операций для их решения. Основным исследования операций операционный методом является включающий следующие этапы: постановка задачи, построение математической модели, исследование модели с целью нахождения оптимального решения для данных условий, анализ и экспериментальное подтверждение результатов решения. Некоторые возможности таких методов рассмотрены на примерах исследования процессов оперативной и тактической разведки с применением беспилотных летательных аппаратов (БПЛА). Современные БПЛА способны выполнять широкий спектр оперативной И тактической разведки, представляющий обязательный элемент обеспечения боевых действий. При этом в процессе разведки выполняются ее главные цели и задачи: обнаружение сил и средств противника в определенном районе; распознавание объектов на определенной территории; определение численности и координат целей;

определение результата боевых действий (состояние объектов противника после нанесения по ним удара). Кроме того, данными видами разведки определяются характеристики местности. наличие инженерного оборудования и сооружений, а также радиационной, химической, бактериологической и гидрометеорологической обстановки. Площадь, которая должна исследоваться в процессе разведки, обычно разбивается на полосы захвата, соответствующие называемые возможностям приборного оборудования, установленного на самолетеразведчике. В зависимости от требуемой оперативности получения разведочных данных и имеющихся возможностей вся площадь района может быть разведана несколькими беспилотными аппаратами или одним несколько пролетов (гонов). Беспилотные аппараты используются для целей разведки, как в военных условиях, так и в народном хозяйстве (сельское хозяйство, рыболовство, лесное хозяйство, картографическая и геодезическая службы и т.п.). БПЛА, как правило, приспособлены также и для радиотехнической разведки. Этот вид разведки меньше зависит от маскировки и погодных условий. Здесь необходимая разведывательная информация получается путем приема и анализа электромагнитных излучений различных технических систем противника. Анализ такой информации позволяет определять типы используемых противником систем, количество таких систем, координаты и некоторые технические характеристики.

Перехват сообщений, передаваемых противником по линиям связи, может представлять еще более широкий спектр информации. Для обработки и анализа полученной при разведке информации широко используются известные методы теории вероятностей. Вероятностные методы оценки будут тем достоверней, чем больший объем разведанных данных будет в распоряжении расчетчиков. Обеспечивать это условие наиболее выгодно, если применять для целей разведки современные БПЛА. При решении многих задач, связанных с организацией разведки, а также маскировки группировки своих войск, оказывается полезным применение методов теории поиска. Обычно задачи поиска предполагают наличие ограниченных ресурсов времени, числа разведывательных единиц, денежных средств и др., которые необходимо распределить таким образом, чтобы минимизировать время обнаружение искомого объекта. Значительный интерес также представляет задача об определении наиболее вероятных направлений на цель. В этом случае учитывается и подвижность цели. Цель может перемещаться со скоростью v_u в любом направлении. Скорость БПЛА-разведчика – v_{pas} . Тогда вероятность обнаружения цели под заданным курсовым углом ϕ может быть определена в виде плотности вероятности $p(\varphi)$. Таким образом, анализ

показывает, что эффективность процессов разведки определяется многими факторами, и в ряде случаев применение беспилотных летательных аппаратов является более выгодным по сравнению с другими видами разведки. Применение методов теории поиска наиболее целесообразно для решения задач организации разведки с целью оптимизации ресурсов и достижения максимальной вероятности обнаружения целей.

УДК 553.601

Многофакторные полиномиальные модели в аэродинамических исследованиях

Конопинь М. О., Пунько И. А., Шевченко В. С. Военная академия Республики Беларусь

Накопленный опыт развития аэродинамики подтверждает огромное значение экспериментальных исследований, которые выполняются на моделях в аэродинамических трубах и на натурных летательных аппаратах. Главные задачи экспериментальных исследований – изучение сил и моментов, возникающих при воздействии воздушной среды на объекты испытаний, а также получение аэродинамических характеристик летательных аппаратов и их частей различного конструктивного исполнения и в широком диапазоне условий применения (скорости, температуры, свойств среды И др.). Насущными проблемами экспериментальных исследований являются их большая трудоемкость и стоимость, а также недостаточно высокая эффективность.

Одним из путей повышения эффективности исследований в области аэродинамики может быть широкое применение математических методов планирования многофакторных экспериментов. Опыт применения их в различных отраслях науки и техники выявил существенные преимущества по сравнению с устаревшими методами исследований влияющих факторов одному». Это: минимизация числа опытов; одновременное варьирование всеми переменными, определяющими процесс; четкие алгоритмы и стратегии, формализующие действие экспериментатора и позволяющие ему принимать оптимальные решения при анализе результатов эксперимента.

Весь процесс получения И исслелований включает комплекс последовательных этапов анализа: статистический анализ дисперсионный регрессионный анализы, И отсеивающие эксперименты, поиск области экстремума, математическое моделирование оптимизацию. Для выделения наиболее значимых факторов используются методы дисперсионного анализа.

Для получения математических зависимостей аэродинамических