

78

УДК 811.111: 004.432.2

Matsak I., Vanik I.

Object-oriented Programming

Belarusian National Technical University

Minsk, Belarus

Object-oriented programming combines a group of data

attributes with functions or methods into a unit called an

"object." Typically, OOP languages are class-based, which

means that a class defines the data attributes and functions as a

blueprint for creating objects, which are instances of the class.

Multiple independent objects may be instantiated or

represented from the same class and interact with each other in

complex ways.

A simple example would be a class representing a

person. The person class would contain attributes to represent

information such as the person’s age, name, height, etc. The

class definition might also contain functions such as

"sayMyName" which would simply print that person’s name to

the screen. A family could be constructed by instantiating

person objects from the class for each member of the family.

Each person object would contain different data attributes since

each person is unique [1].

This programming style is pervasive in popular

programming languages such as Java, C++, Python, JavaScript

and C# among others. By defining sets of classes that represent

and encapsulate objects in a program, the classes can be

organized into modules, improving the structure and

organization of software programs. Thus, developers often use

OOP as a tool when they need to create complex programs

since they are easier to perceive in terms of classes and their

relationships.

79

Object-oriented programming has four basic concepts:

encapsulation, abstraction, inheritance, and polymorphism.

Even if these concepts seem incredibly complex, understanding

the general framework of how they work will help you

understand the basics of an OOP computer program. Below,

we outline these four basic principles and what they entail.

The word, “encapsulate,” means to enclose something.

Just like a pill "encapsulates" or contains the medication inside

of its coating, the principle of encapsulation works in a similar

way in OOP: by forming a protective barrier around the

information contained within a class from the rest of the code.

In OOP, we encapsulate by binding the data and

functions which operate on that data into a single unit, the

class. By doing so, we can hide private details of a class from

the outside world and only expose functionality that is

important for interfacing with it [2].

Often, it’s easier to reason and design a program when

you can separate the interface of a class from its

implementation, and focus on the interface. It looks like a

“black box,” where it’s not important to understand the gory

inner workings in order to reap the benefits of using it. This

process is called “abstraction” in OOP, because we are

abstracting away the complex implementation details of a class

and only presenting a clean and easy-to-use interface via the

class member functions. Carefully used, abstraction helps

isolate the impact of changes made to the code, so that if

something goes wrong, the change will only affect the

implementation details of a class and not the outside code.

Object-oriented languages that support classes almost

always support the notion of “inheritance.” Classes can be

organized into hierarchies, where a class might have one or

more parent or child classes. Therefore, if a class inherits from

another class, it automatically obtains a lot of the same

functionality and properties from that class and can be

80

extended to contain separate code and data. A nice feature of

inheritance is that it often leads to good code reuse since a

parent class functions don’t need to be re-defined in any of its

child classes.

In OOP, polymorphism allows for the uniform treatment

of classes in a hierarchy. Therefore, calling code only needs to

be written to handle objects from the root of the hierarchy, and

any object instantiated by any child class in the hierarchy will

be handled in the same way.

Because derived objects share the same interface as their

parents, the calling code can call any function in that class

interface. At run-time, the appropriate function will be called

depending on the type of object passed leading to possibly

different behaviors.

Object Oriented programming requires thinking about the

structure of the program and planning at the beginning of

coding. Looking at how to break up the requirements into

simple, reusable classes that can be used to blueprint instances

of objects. Overall, implementing OOP allows for better data

structures and reusability, saving time in the long run [3].

References:

1. SOLID Rules in Object-Oriented Programming [Electronic

resource]. – Mode of access: https://community-

z.com/communities/epam-poland/articles/1190. – Date of

access: 14.11.2021.

2. The four principles of OOP [Electronic resource]. – Mode of

access:https://seramasumi.github.io/docs/Tech%20Knowledge/

The%20four%20principles%20of%20OOP.html. – Date of

access: 14.11.2021.

3. OOP Explained in Depth [Electronic resource]. – Mode of

access: https://www.educative.io/blog/object-oriented-

programming – Date of access: 14.11.2021.

