МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКОЙ СИСТЕМЫ ЛЕТАТЕЛЬНОГО АППАРАТА

¹Миронов Д. Н., ²Чигарев А. В.

¹Белорусский национальный технический университет, Минск ²Белорусский государственный университет, Минск

Моделирование, исследование и описание колебаний всех элементов и систем летательного аппарата является сложной и практически не решаемой задачей. Двигатель летательного аппарата можно изучить как колебательную систему с шестью степенями свободы, а таких двигателей может быть и два и четыре. В различных системах имеются насосы, компрессоры, генераторы, гидромоторы и порой не в одном экземпляре. Таким образом колебательная система летательного аппарата представляет собой систему с бесконечным числом степеней свободы, которая будет описываться бесконечным числом дифференциальных уравнений [1]. И понятно, что решить эту систему с бесконечным числом уравнений невозможно.

Поэтому необходимо упростить такую колебательную систему путем наложения ограничений и допущений: замена системы с бесконечным числом степеней свободы на систему с конечным числом степеней свободы, замена нескольких масс одной массой соединенной с соседними одинаковыми стержнями, которые представляют собой упругие связи между элементами [2]. Все элементы и связи в процессе эксплуатации подвергаются различным нагрузкам от которых зависит техническое состояние составных элементов и как следствие ресурс модулей, агрегатов и системы в целом. Все модули и элементы в процессе эксплуатации совершают перемещение, которые изменяют свое значение, вызывают дополнительные напряжения, которые сокращают ресурс составных элементов механической системы и системы в целом.

Рис. 1. Замена летательного аппарата массами соединенными стержнями

Одним из наиболее распространенных способов исследования является способ перехода от сложной механической системы к более простой динамической модели, которая по свои свойствам способна заменить исходную системы. При составлении динамической модели более мелкие детали, агрегаты и элементы заменяются одной массой. Силовое соединение между элементами и модулями представляем в виде линий (идеальных стержней) с постоянной жесткостью. Не линейные соединения аппроксимируют в виде линий. Таким образом сложная механическая система изображается в виде материальных масс соединенных линиями (связями).

Рассмотрим транспортный летательный аппарат с двумя двигателями. Фюзеляж летательного аппарата заменим тремя массами (рис. 1): массой 1 заменим носовую часть фюзеляжа, 2 – центральную часть фюзеляжа, 3 – хвостовую часть фюзеляжа. Правую и левую консоль летательного аппарата заменим массами 5 и 4 соответственно. Киль заменим массой 8, а стабилизаторы – массами 9 и 10. Все массы соединим жесткими стержнями. Стержнями представим и три опоры летательного аппарата.

В результате описанных выше преобразований модель летательного аппарата с двумя двигателями можно представить моделью представленной на рис. 2. Где I_1 – момент инерции носовой части фюзеляжа, I_2 – момент инерции центральной части фюзеляжа, I_3 – момент инерции хвостовой части фюзеляжа, I_4 – момент инерции левой консоли, I_5 – момент инерции правой консоли, I_6 – момент инерции левого двигателя, I_7 – момент инерции правого двигателя, I_8 – момент инерции вертикального оперения, I_9 и I_{10} – момент инерции горизонтального оперения; а e_{12} , e_{23} , e_{24} , e_{25} , e_{46} , e_{57} , e_{38} , e_{39} , e_{310} – податливость соответствующих соединений между модулями и элементами.

Рис. 2. Модель летательного аппарата с двумя двигателями

Составим математическую модель летательного аппарата, представленного на рис. 2 опираясь на уравнения Лагранжа второго рода [2, 3]:

$$\begin{cases} I_{1}\ddot{\varphi}_{1} + \frac{\varphi_{1} - \varphi_{2}}{e_{12}} = Q_{1}; \\ I_{2}\ddot{\varphi}_{2} - \frac{\varphi_{1} - \varphi_{2}}{e_{12}} + \frac{\varphi_{2} - \varphi_{3}}{e_{23}} + \frac{\varphi_{2} - \varphi_{4}}{e_{24}} + \frac{\varphi_{2} - \varphi_{5}}{e_{25}} = Q_{2}; \\ I_{3}\ddot{\varphi}_{3} - \frac{\varphi_{2} - \varphi_{3}}{e_{23}} + \frac{\varphi_{3} - \varphi_{8}}{e_{38}} + \frac{\varphi_{3} - \varphi_{9}}{e_{39}} + \frac{\varphi_{3} - \varphi_{10}}{e_{310}} = Q_{3}; \\ I_{4}\ddot{\varphi}_{4} - \frac{\varphi_{6} - \varphi_{4}}{e_{46}} + \frac{\varphi_{4} - \varphi_{2}}{e_{24}} = Q_{4}; \\ I_{5}\ddot{\varphi}_{5} - \frac{\varphi_{7} - \varphi_{5}}{e_{57}} + \frac{\varphi_{5} - \varphi_{2}}{e_{25}} = Q_{5}; \\ I_{6}\ddot{\varphi}_{6} + \frac{\varphi_{6} - \varphi_{4}}{e_{46}} = Q_{6}; \\ I_{7}\ddot{\varphi}_{7} + \frac{\varphi_{7} - \varphi_{5}}{e_{57}} = Q_{7}; \\ I_{8}\ddot{\varphi}_{8} + \frac{\varphi_{8} - \varphi_{3}}{e_{38}} = Q_{8}; \\ I_{9}\ddot{\varphi}_{9} + \frac{\varphi_{9} - \varphi_{3}}{e_{39}} = Q_{9}; \\ I_{10}\ddot{\varphi}_{10} + \frac{\varphi_{10} - \varphi_{3}}{e_{310}} = Q_{10}. \end{cases}$$

$$(1)$$

где Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_6 , Q_7 , Q_8 , Q_9 , Q_{10} – внешние обобщенные силы и моменты, а φ_1 , φ_2 , φ_3 , φ_4 , φ_5 , φ_6 , φ_7 , φ_8 , φ_9 , φ_{10} – угловые отклонения масс (кручение стержней).

Рассмотрим случай, когда на систему не воздействуют внешние факторы (силы и моменты). В таком случае правые части уравнений системы (1) равны нулю.

Разделим правые и левые части уравнений системы (1) на соответствующие моменты инерции I_i , где $i \in [1,10]$ и обозначим $\varphi_1 - \varphi_2 = x_{12}$, $\varphi_2 - \varphi_3 = x_{23}$, $\varphi_2 - \varphi_4 = x_{24}$, $\varphi_2 - \varphi_5 = x_{25}$, $\varphi_3 - \varphi_8 = x_{38}$, $\varphi_3 - \varphi_9 = x_{39}$, $\varphi_3 - \varphi_{10} = x_{310}$, $\varphi_6 - \varphi_4 = x_{64}$, $\varphi_7 - \varphi_5 = x_{75}$, тогда

$$\begin{cases} \ddot{\varphi}_{1} + \frac{x_{12}}{e_{12}I_{1}} = 0; \\ \ddot{\varphi}_{2} - \frac{x_{12}}{e_{12}I_{2}} + \frac{x_{23}}{e_{23}I_{2}} + \frac{x_{24}}{e_{24}I_{2}} + \frac{x_{25}}{e_{25}I_{2}} = 0; \\ \ddot{\varphi}_{3} - \frac{x_{23}}{e_{23}I_{3}} + \frac{x_{38}}{e_{38}I_{3}} + \frac{x_{39}}{e_{39}I_{3}} + \frac{x_{310}}{e_{310}I_{3}} = 0; \\ \ddot{\varphi}_{4} - \frac{x_{64}}{e_{46}I_{4}} - \frac{x_{24}}{e_{24}I_{4}} = 0; \\ \ddot{\varphi}_{5} - \frac{x_{75}}{e_{57}I_{5}} - \frac{x_{25}}{e_{25}I_{5}} = 0; \\ \ddot{\varphi}_{6} + \frac{x_{64}}{e_{46}I_{6}} = 0; \\ \ddot{\varphi}_{7} + \frac{x_{75}}{e_{57}I_{7}} = 0; \\ \ddot{\varphi}_{8} - \frac{x_{38}}{e_{38}I_{8}} = 0; \\ \ddot{\varphi}_{9} - \frac{x_{39}}{e_{39}I_{9}} = 0; \\ \ddot{\varphi}_{10} - \frac{x_{310}}{e_{310}I_{10}} = 0. \end{cases}$$

$$(2)$$

Обозначим $\varphi_1 - \varphi_2 = x_{12}$, $\varphi_2 - \varphi_3 = x_{23}$, $\varphi_2 - \varphi_4 = x_{24}$, $\varphi_2 - \varphi_5 = x_{25}$, $\varphi_3 - \varphi_8 = x_{38}$, $\varphi_3 - \varphi_9 = x_{39}$, $\varphi_3 - \varphi_{10} = x_{310}$, $\varphi_6 - \varphi_4 = x_{64}$, $\varphi_7 - \varphi_5 = x_{75}$, тогда из обозначений следует, что $\ddot{\varphi}_1 = \ddot{x}_{12} + \ddot{\varphi}_2$, $\ddot{\varphi}_2 = \ddot{x}_{23} + \ddot{\varphi}_3$, $\ddot{\varphi}_3 = \ddot{x}_{38} + \ddot{\varphi}_8$, $\ddot{\varphi}_4 = \ddot{\varphi}_2 - \ddot{x}_{24}$, $\ddot{\varphi}_5 = \ddot{\varphi}_2 - \ddot{x}_{25}$, $\ddot{\varphi}_6 = \ddot{x}_{64} + \ddot{\varphi}_4$, $\ddot{\varphi}_7 = \ddot{x}_{75} + \ddot{\varphi}_5$, $\ddot{\varphi}_8 = \ddot{\varphi}_3 - \ddot{x}_{38}$, $\ddot{\varphi}_9 = \ddot{\varphi}_3 - \ddot{x}_{39}$, $\ddot{\varphi}_{10} = \ddot{\varphi}_3 - \ddot{x}_{310}$. Вычтя из первого уравнения 2 второе, из второго – третье, из третьего – восьмое, из четвертого – второе, из пятого – второе, из шестого – четвертое, из седьмого – пятое, из восьмого – третье, из девятого – третье, из десятого – третье, имеем:

$$\begin{aligned} x_{12}^{"} + \frac{x_{12}}{e_{12}l_2} - \frac{x_{23}}{e_{23}l_2} - \frac{x_{24}}{e_{24}l_2} - \frac{x_{25}}{e_{25}l_2} + \frac{x_{12}}{e_{12}l_1} &= 0; \\ x_{23}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{12}}{e_{12}l_2} + \frac{x_{23}}{e_{23}l_2} + \frac{x_{24}}{e_{24}l_2} + \frac{x_{25}}{e_{25}l_2} &= 0; \\ x_{38}^{"} + \frac{x_{38}}{e_{38}l_8} - \frac{x_{23}}{e_{23}l_3} + \frac{x_{38}}{e_{38}l_3} + \frac{x_{39}}{e_{39}l_3} + \frac{x_{310}}{e_{310}l_3} &= 0; \\ -x_{24}^{"} + \frac{x_{12}}{e_{12}l_2} - \frac{x_{23}}{e_{23}l_2} - \frac{x_{24}}{e_{24}l_2} - \frac{x_{25}}{e_{25}l_2} - \frac{x_{64}}{e_{46}l_4} - \frac{x_{24}}{e_{24}l_4} &= 0; \\ -x_{25}^{"} + \frac{x_{12}}{e_{12}l_2} - \frac{x_{23}}{e_{23}l_2} - \frac{x_{24}}{e_{24}l_2} - \frac{x_{25}}{e_{25}l_2} - \frac{x_{75}}{e_{57}l_5} - \frac{x_{25}}{e_{25}l_5} &= 0; \\ x_{64}^{"} + \frac{x_{64}}{e_{46}l_4} + \frac{x_{24}}{e_{24}l_4} + \frac{x_{64}}{e_{46}l_6} &= 0; \\ x_{75}^{"} + \frac{x_{75}}{e_{57}l_5} + \frac{x_{25}}{e_{52}l_5} + \frac{x_{75}}{e_{57}l_7} &= 0; \\ -x_{38}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{38}}{e_{39}l_3} &= 0; \\ -x_{39}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} &= 0; \\ -x_{310}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} &= 0; \\ -x_{310}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} &= 0; \\ -x_{310}^{"} + \frac{x_{23}}{e_{23}l_3} - \frac{x_{38}}{e_{38}l_3} - \frac{x_{39}}{e_{39}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} - \frac{x_{310}}{e_{310}l_3} &= 0. \end{aligned}$$

Анализируя систему 3 видим, что третье и восьмое уравнения одинаковые. А значит третье уравнение можно исключить из системы и приведем подобные слагаемые. В результате получим систему 4, в которой стало на одно уравнение меньше, что значительно упрощает ее решение:

$$\begin{aligned} x_{12}^{"} + \left(\frac{1}{e_{12}I_2} + \frac{1}{e_{12}I_1}\right) x_{12} - \frac{x_{23}}{e_{23}I_2} - \frac{x_{24}}{e_{24}I_2} - \frac{x_{25}}{e_{25}I_2} = 0; \\ x_{23}^{"} + \left(\frac{1}{e_{23}I_3} + \frac{1}{e_{23}I_2}\right) x_{23} - \frac{x_{38}}{e_{38}I_3} - \frac{x_{39}}{e_{39}J_3} - \frac{x_{310}}{e_{310}J_3} - \frac{x_{12}}{e_{12}I_2} + \frac{x_{24}}{e_{24}I_2} + \frac{x_{25}}{e_{25}I_2} = 0; \\ -x_{24}^{"} - \left(\frac{1}{e_{24}I_2} + \frac{1}{e_{24}I_4}\right) x_{24} + \frac{x_{12}}{e_{12}I_2} - \frac{x_{23}}{e_{23}I_2} - \frac{x_{25}}{e_{25}I_2} - \frac{x_{64}}{e_{46}I_4} = 0; \\ -x_{25}^{"} - \left(\frac{1}{e_{25}I_2} + \frac{1}{e_{25}I_5}\right) x_{25} + \frac{x_{12}}{e_{12}I_2} - \frac{x_{23}}{e_{23}I_2} - \frac{x_{24}}{e_{24}I_2} - \frac{x_{75}}{e_{57}I_5} = 0; \\ x_{64}^{"} + \left(\frac{1}{e_{46}I_4} + \frac{1}{e_{46}I_6}\right) x_{64} + \frac{x_{24}}{e_{42}I_4} = 0; \\ x_{75}^{"} + \left(\frac{1}{e_{57}I_5} + \frac{1}{e_{57}I_7}\right) x_{75} + \frac{x_{25}}{e_{52}I_5} = 0; \\ -x_{38}^{"} - \left(\frac{1}{e_{38}I_3} + \frac{1}{e_{38}I_8}\right) x_{38} + \frac{x_{23}}{e_{23}I_3} - \frac{x_{39}}{e_{39}I_3} - \frac{x_{310}}{e_{310}I_3} = 0; \\ -x_{39}^{"} - \left(\frac{1}{e_{39}I_3} + \frac{1}{e_{39}I_9}\right) x_{39} + \frac{x_{23}}{e_{23}I_3} - \frac{x_{38}}{e_{38}I_3} - \frac{x_{310}}{e_{310}I_3} = 0; \\ -x_{310}^{"} - \left(\frac{1}{e_{310}I_3} + \frac{1}{e_{310}I_{10}}\right) x_{310} + \frac{x_{23}}{e_{23}I_3} - \frac{x_{38}}{e_{38}I_3} - \frac{x_{39}}{e_{39}I_3} = 0. \end{aligned}$$

Механическая система представленная на рис. 2, находится в состоянии покоя (все системы и агрегаты не функционируют). Единственным внешним воздействием будет удар под воздействием, которого система будет совершать колебания, описанные системой уравнений (4). Механические колебания, как правило, являются гармоническими: протекающими по законам косинуса или синуса. Поэтому положим, что $x_i = A_i \cos(\omega_i t)$, $\ddot{x}_i = A_i \omega_i^2 \cos(\omega_i t)$. Подставив значения соответствующих значений x_i и \ddot{x}_i в систему уравнений при условии, что $k_{122} = \frac{1}{e_{12}l_2}$, $k_{121} = \frac{1}{e_{12}l_1}$, $k_{232} = \frac{1}{e_{23}l_2}$, $k_{242} = \frac{1}{e_{24}l_2}$, $k_{252} = \frac{1}{e_{25}l_2}$, $k_{233} = \frac{1}{e_{23}l_3}$, $k_{383} = \frac{1}{e_{38}l_3}$, $k_{393} = \frac{1}{e_{39}l_3}$, $k_{3103} = \frac{1}{e_{310}l_3}$, $k_{244} = \frac{1}{e_{24}l_4}$, $k_{464} = \frac{1}{e_{46}l_4}$, $k_{255} = \frac{1}{e_{25}l_5}$, $k_{575} = \frac{1}{e_{57}l_5}$, $k_{466} = \frac{1}{e_{46}l_6}$, $k_{424} = \frac{1}{e_{42}l_4}$, $k_{577} = \frac{1}{e_{57}l_7}$, $k_{525} = \frac{1}{e_{52}l_5}$, $k_{388} = \frac{1}{e_{38}l_8}$, $k_{399} = \frac{1}{e_{39}l_9}$, $k_{31010} = \frac{1}{e_{310}l_{10}}$ система примет вид:

$$\begin{array}{l} -A_{12}\,\omega_{12}^{2}\,\cos(\omega_{12}t) + (k_{122} + k_{121})A_{12}\,\cos(\omega_{12}t) - k_{232}A_{23}\,\cos(\omega_{23}t) - \\ -k_{242}A_{24}\,\cos(\omega_{24}t) - k_{252}A_{25}\,\cos(\omega_{25}t) = 0; \\ -A_{23}\,\omega_{23}^{2}\,\cos(\omega_{23}t) + (k_{233} + k_{232})A_{23}\,\cos(\omega_{23}t) - k_{383}A_{38}\,\cos(\omega_{38}t) - \\ -k_{393}A_{39}\,\cos(\omega_{39}t) - k_{3103}A_{310}\,\cos(\omega_{310}t) - k_{122}A_{12}\,\cos(\omega_{12}t) + \\ +k_{242}A_{24}\,\cos(\omega_{24}t) + k_{252}A_{25}\,\cos(\omega_{25}t) = 0; \\ A_{24}\omega_{24}^{2}\,\cos(\omega_{24}t) - (k_{242} + k_{244})A_{24}\,\cos(\omega_{24}t) + k_{122}A_{12}\,\cos(\omega_{12}t) - \\ -k_{232}A_{23}\,\cos(\omega_{23}t) - k_{252}A_{25}\,\cos(\omega_{25}t) - k_{464}A_{64}\,\cos(\omega_{64}t) = 0; \\ A_{25}\,\omega_{25}^{2}\cos(\omega_{25}t) - (k_{252} + k_{255})A_{25}\,\cos(\omega_{25}t) + k_{122}A_{12}\,\cos(\omega_{12}t) - \\ -k_{232}A_{23}\,\cos(\omega_{23}t) - k_{242}A_{24}\,\cos(\omega_{24}t) - k_{575}A_{75}\,\cos(\omega_{75}t) = 0; \\ -A_{64}\,\omega_{64}^{2}\cos(\omega_{64}t) + (k_{464} + k_{466})A_{64}\cos(\omega_{64}t) + k_{424}A_{24}\cos(\omega_{24}t) = 0; \\ -A_{75}\,\omega_{75}^{2}\,\cos(\omega_{75}t) + (k_{575} + k_{577})A_{75}\cos(\omega_{75}t) + k_{525}A_{25}\cos(\omega_{25}t) = 0; \\ A_{38}\,\omega_{38}^{2}\cos(\omega_{38}t) - (k_{383} + k_{388})A_{38}\cos(\omega_{38}t) + k_{233}A_{23}\cos(\omega_{23}t) - \\ -k_{393}A_{39}\cos(\omega_{39}t) - (k_{393} + k_{399})A_{39}\cos(\omega_{39}t) + k_{233}A_{23}\cos(\omega_{23}t) - \\ -k_{383}A_{38}\cos(\omega_{38}t) - k_{3103}A_{310}\cos(\omega_{310}t) = 0; \\ A_{310}\,\omega_{310}^{2}\cos(\omega_{310}t) - (k_{3103} + k_{3101})A_{310}\cos(\omega_{310}t) + k_{233}A_{23}\cos(\omega_{23}t) - \\ -k_{383}A_{38}\cos(\omega_{38}t) - k_{393}A_{39}\cos(\omega_{39}t) + k_{233}A_{23}\cos(\omega_{23}t) - \\ -k_{383}A_{38}\cos(\omega_{38}t) - k_{393}A_{39}\cos(\omega_{39}t) = 0. \\ \end{array}$$

Используя систему уравнений (5) можно определить амплитуду и частоту колебаний для каждой массы, которая представляет собой модуль летательного аппарата. Предположим, что колебания системы будут свободными и допустим, что $A_{64} = A_{75} = A_{310} = A_{39} = A_{38} = A_{25} = A_{24} = A_{23} = A_{12} = A$ и $\omega_{310} = \omega_{75} = \omega_{64} = \omega_{39} = \omega_{38} = \omega_{25} = \omega_{24} = \omega_{23} = \omega_{12} = \omega$ и разделив правую и левую части уравнений системы (5) на $A \cos(\omega t)$ получим:

$$\begin{cases} -\omega^{2} + (k_{122} + k_{121}) - k_{232} - k_{242} - k_{252} = 0; \\ -\omega^{2} + (k_{233} + k_{232}) - k_{383} - k_{393} - k_{3103} - k_{122} + k_{242} + k_{252} = 0; \\ \omega^{2} - (k_{242} + k_{244}) + k_{122} - k_{232} - k_{252} - k_{464} = 0; \\ \omega^{2} - (k_{252} + k_{255}) + k_{122} - k_{232} - k_{242} - k_{575} = 0; \\ -\omega^{2} + (k_{464} + k_{466}) + k_{424} = 0; \\ -\omega^{2} + (k_{575} + k_{577}) + k_{525} = 0; \\ \omega^{2} - (k_{383} + k_{388}) + k_{233} - k_{393} - k_{3103} = 0; \\ \omega^{2} - (k_{393} + k_{399}) + k_{233} - k_{383} - k_{3103} = 0; \\ \omega^{2} - (k_{3103} + k_{31010}) + k_{233} - k_{383} - k_{393} = 0. \end{cases}$$

$$(6)$$

В системе (6) получены уравнения из которых можно выразить и найти значения ω и k_i . В реальности не возможен случай свободных колебаний с постоянными амплитудами и частотами всех составных элементов сложной механической системы. Но приравняв любые из уравнений системы (6) по ω^2 получаем равенство сумм k_i , которые зависят от моментов инерции составных элементов и податливости их соединений. Для примера приравняем два первых уравнения системы (6)

$$-k_{233} - 2k_{232} + k_{383} + k_{393} + k_{3103} + 2k_{122} - -2k_{242} - 2k_{252} + k_{121} = 0.$$
(7)

Выводы. В результате получено уравнение, связывающее моменты инерции и податливость составных элементов системы. Такие зависимости позволяют оптимально подобрать размеры, массу и материал составных элементов сложных механических систем. Полученная система дифференциальных уравнений (6) позволяет определить параметры собственных колебаний элементов сложной механической системы по изменениям которых можно оценить изменение ее технического состояния.

ЛИТЕРАТУРА

1. Вибродиагностика / Ф. Я. Балицкий [и др.]. – М.: Машиностроение, 2005. – Т. 7, Кн. 2. – 828 с.

2. Микулик, Н. А. Основы теории динамических систем транспортных средств: монография / Н. А. Микулик. – Мн.: БНТУ, 2007. – 218 с.

3. Добронравов, В. В. Курс теоретической механики : учебник для вузов / В. В. Добронравов, Н. Н. Никитин, А. Л. Дворников. – М.: Высшая школа, 1974. – 3-е изд., перераб. – 528 с.

Поступила: 02.02.2021