2. Филонов, И.П. Проектирование технологических процессов в машиностроении: учебное пособие для вузов / И.П. Филонов [и др.]; под общ. ред. И.П. Филонова; +CD. – Минск: УП «Технопринт», 2003. – 910 с.

УДК 666.01

Глушень Т.М.

ВЫБОР СОСТАВОВ ДЛЯ СИНТЕЗА ХИМИКО-ЛАБОРАТОРНЫХ СТЕКОЛ ДЛЯ ТОНКОСТЕННОЙ ПОСУДЫ

Учреждение образования «Белорусский государственный технологический университет», г. Минск, Республика Беларусь

Научный руководитель: проф. Н. М. Бобкова

Проведена научно-исследовательская работа по выбору, синтезу и изучению свойств известных промышленных составов химико-лабораторных стекол для тонкостенной посуды, на основании чего выполнен сопоставительный анализ составов и свойств этих стёкол.

Химико-лабораторное стекло является одним из важных видов технического стекла, применяемого для изготовления лабораторных посуды и приборов, а также для химической аппаратуры.

В нашей республике неизменно встает вопрос об укреплении материально-технической базы химических лабораторий научно-исследовательских институтов, заводов, техникумов, вузов, медицинских учреждений и т. д. В первую очередь необходимо обеспечить их изделиями из высококачественного химико-лабораторного стекла, без чего не могут осуществляться никакие аналитические работы, без чего не может идти обучение химических кадров.

В настоящее время в Республике Беларусь отсутствует производство изделий химико-лабораторного назначения. В месте с тем потребность республики в таких изделиях очень велика. Поставка изделий осуществляется в основном из России. Объём поставок достаточно велик и составляет свыше дссятков миллиардов рублей в год, так как перечень потребителей чрезвычайно широк. Химико-лабораторную посуду потребляют предприятия правоохранения, медицины, пищевой промышленности, приборостроения, учреждения образования (вузы, техникумы, училища, школы), лаборатории промышленных и сельскохозяйственных предприятий. Поэтому обоснована постановка вопроса о создании в республике собственного производства химико-лабораторной посуды. Кроме того, наша республика располагает

такими возможностями, учитывая наличие, например, на стеклозаводе "Неман" незадействованных стекловаренных печей. Однако, следует учитывать тот факт, что все известные составы химико-лабораторных стёкол были разработаны, в основном, в первой половине прошлого века и не всегда удовлетворяют возросшим современным требованиям, особенно международной классификации.

Для производства химико-лабораторной посуды необходимы стекла, обладающие высокой химической устойчивостью — способностью противостоять разрушающему действию агрессивных сред: атмосферной влаги, парам воды, растворам кислот, щелочей и т.д., и высокой термической устойчивостью, т. е. способностью выдерживать резкий перепад температур.

По мере развития разнообразных химических производств и связанных с этим непрерывно усложняющихся аналитических работ все больше потребуется новых видов стёкол, устойчивых в различных агрессивных средах, причем требования к химической устойчивости стекла будут неизменно повышаться.

Анализ наиболее известных составов химико-лабораторных стёкол показывает, что наблюдаются колебания в содержании основных компонентов, масс. %: SiO_2 (68,0 - 72,6), CaO (3,4 - 8,7), MgO (0 - 3,6), \sum Na_2O+K_2O (13,0 - 19,0), Al_2O_3 (3,5 - 6,7), B_2O_3 (0 - 3,0). Эти колебания достаточно ощутимы, поэтому и свойства стёкол существенно различны. Это не позволяет сделать вывод о рекомендации наиболее рационального состава химико-лабораторного стекла.

На основе этих данных был запланирован синтез стёкол на основе системы $Na_2O-CaO-SiO_2$ с дополнительным введением Al_2O_3 и B_2O_3 . Исследуемая область составов включала:

SiO₂ от 68 до 76 масс. %;

СаО от 8 до 16 масс. %;

Na₂O от 8 до 16 масс. %;

Al₂O₃ 4 масс.%;

В₂О₃ 4 масс. %.

Стёкла варились в газовой печи при температуре 1480 °C. Все стёкла корошо провариваются и осветляются.

Исследование кристаллизационной способности стёкол в градиентной печи показало, что все стёкла проявляют высокую устойчивость к кристаллизации.

Таким образом, все эти стёкла могут служить основой для получения зависимости их физико-химических свойств от состава.

ЛИТЕРАТУРА

1. Дуброво, С.К. Стекло для лабораторных изделий и химической аппаратуры / С.К. Дуброво. – М.: Издательство «Наука», 1965. – 103 с.

- 2. Артамонова, М.В. Химическая технология стекла и ситаллов: учеб. для вузов / М.В. Артамонова [и др.]; под общ. ред. Н.М. Павлушкина. М.: Стройиздат, 1983. 432 с.
- 3. Стекло: справочник / под ред. Н. М. Павлушкина. М.: Стройиздат, 1973. 487 с.
- 4. Справочник по производству стекла / под ред. И.И. Китайгородского, С. И. Сильвестровича. М.: Стройиздат, 1963. 1026 с.
- 5. Правдин, П.В. Лабораторные приборы и оборудование из стекла / П.В. Правдин. М.: Химия, 1978. 304 с.

УДК 621.923

Головков В.В., Садченко А.Г., Сенчуров Е. В., Бабич В.Е.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ФЕРРОАБРАЗИВНЫХ ПОРОШКОВ МЕТОДОМ ЛИТЬЯ

Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск, Беларусь

Научный руководитель: канд. техн. наук, доц. Сергеев Л.Е.

Показано, что от физико-механических и экологических характеристик ферроабразивных порошков зависят стабильность и конкурентоспособность процесса магнитно-абразивной обработки. Установлено, что путем подбора легирующих элементов, режимов распыления и термической обработки можно избирательно влиять на структуру, форму и размеры частии. Определено, что основными направлениями в этой области являются совершенствование на базе существующих технологий известных и разработка новых видов порошка.

Под магнитно-абразивной обработкой (МАО) понимают совокупность способов абразивного резания, использующих магнитное поле непосредственно в зоне обработки [1]. Магнитно-абразивная среда (порошки, гранулы, суспензии) под действием сил магнитного поля прижимается к обрабатываемой поверхности и при их относительном перемещении осуществляет удаление припуска, обеспечивая снижение шероховатости. За время существования МАО использовались магнитные порошковые сплавы только на основе железа (по причине высокой стоимости и дефицитности кобальта), поэтому их обычное название ферроабразивные порошки (ФАП). Абразивные свойства ФАП определяются присутствием в их структуре сверхтвердых фаз [2]. При разработке составов ФАП и технологии их изготовления выбор этих фаз осуществляют с учетом твердости, химической инертности по отношению к обрабатываемому материалу.