УДК 620.130

Пространственно-временное распределение напряженности магнитного поля электромагнитных импульсов вблизи поверхности металлических образцов

Павлюченко В.В.

Белорусский национальный технический университет

При падении электромагнитной волны на поверхность металлического образца на этой поверхности, а также над ней и в поверхностных слоях образца создается повышенная плотность энергии электромагнитного поля, вызванная его взаимодействием с электронами в образце. В результате поверхностные, а затем и глубинные слои образца становятся источниками вторичных электромагнитных волн. Магнитное поле, созданное свободными электронами в металле противодействует проникновению в металл приложенного поля, а на поверхности образца и в окружающем пространстве увеличивает напряженность магнитного поля с временной задержкой полей глубинных слоев по мере распространения электромагнитной волны вглубь металла. Это явление исследовано автором в ряде работ и использовано для разработки способов и устройств контроля материалов применительно к близкодействующим источникам электромагнитного поля в области средних магнитных полей ($1\cdot 10^3 \div 1\cdot 10^5$) А/м и частот до $1\cdot 10^6$ Гц с разными формами импульсов поля источника и различными датчиками магнитного поля.

На рис.1 показаны зависимости $1\div 6$ сигнала, снимаемого с датчика Холла от времени t для образцов из A1, а также зависимость 7 тока I линейного токопровода от времени t. Зависимости 1, 2, 3 характеризуют сигнал U_1 соответственно для образцов толщиной $2\cdot 10^{-3}$ м , $2\cdot 10^{-4}$ м и в отсутствие образца. Здесь же изображены зависимости 4, 5, 6 сигнала U_2 , соответствующие зависимостям 1, 2 и 3.Сигнал U_1 является суммой трех сигналов: сигнала, определяемого величиной тангенциальной составляющей напряженности магнитного поля H_{τ} , сигнала ее производной по времени dH_{τ}/dt и сигнала антенны, в роли которой выступает полный контур датчика. Сигнал U_2 является суммой двух сигналов — сигнала производной dH_{τ}/dt и сигна-

ла антенны. Измерения проведены на расстоянии оси датчика до поверхности образца $8\cdot 10^{-4}$ и до оси токопровода на $5,45\cdot 10^{-3}$ м.

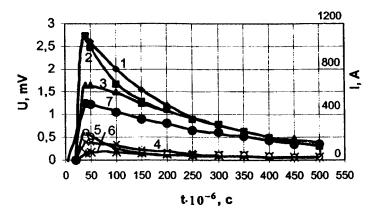


Рис. 1

Из рис.1 видно, что максимумы сигналов U_{1max} для образцов толщиной $2\cdot 10^{-3}$ м и $2\cdot 10^{-4}$ м (кривые 1 и 2 при $t=40\cdot 10^{-6}$ с) превышают U_{1max} в отсутствие образцов (кривая 3) соответственно в 1,67 и 1,61 раза. Обработка результатов измерений сигналов U_{1max} (кривые $1\div 3$) с учетом сигналов U_{2max} (кривые $4\div 6$) с переводом U в абсолютные значения H_{τ} приводит к следующему: величина $H_{\tau max}$ увеличивается вблизи поверхности образца толщиной $2\cdot 10^{-3}$ м в $k_1=1,57$ раз, а вблизи поверхности образца толщиной $2\cdot 10^{-4}$ м в $k_1=1,37$ раз. Форма зависимости U(t) в отсутствие образца (кривая 3) близка к форме импульса тока I(t) (кривая 7), что свидетельствует о сравнительно небольшом влиянии сигналов антенны и производной dH_{τ}/dt на результаты измерений. Сигналы U_1 (кривые 1,2) со временем уменьшаются и сливаются с U_1 в отсутствие образцов (кривая 3) соответственно через $21\cdot 10^{-6}$ с и $11\cdot 10^{-6}$ с с момента старта поля источника (на рис.1 это точки, соответствующие временам $25\cdot 10^{-6}$ с и $15\cdot 10^{-6}$ с. Это означает, что созданная электронами металлического образца повышенная плотность энергии электромагнитного поля уменьшается не мгновенно, а за указанные промежутки времени, которые зависят от толщины образцов.

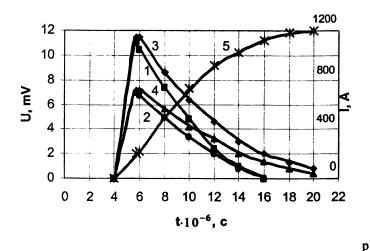


Рис.2

На рис.2 показаны следующие зависимости: 1 и 2 — зависимости сигнала $U_1(t)$ соответственно для образца толщиной $2 \cdot 10^{-3}$ м и в отсутствие образца, 3 и 4 — соответствующие 1 и 2 зависимости сигнала $U_2(t)$, 5- зависимость тока I линейного токопровода от времени t. Сигналы для образца толщиной $2 \cdot 10^{-4}$ м на рис.2 не показаны, т.к. накладываются на зависимости $1 \div 4$ и не позволяют их анализировать. Зависимости U(t) и I (t), изображенные на рис.2, являются начальными участками аналогичных зависимостей рис.1, на котором они должны были быть показаны в области отрицательной полярности сигнала U(t). В результате изменения полярности сигнала, что в данном случае на результаты измерений никак не влияет, зависимости $U_2(t)$ идут выше зависимостей $U_1(t)$.

Результаты измерений U(t) на рис.2 носят ярко выраженный эффект антенны: сигналы, обусловленные антенной, примерно в 10 раз превышают сигналы датчика, соответствующие измеряемым H_{τ} (например, при $t=6\cdot 10^{-6}$ с), Из рис.2 также видно, что величина H_{τ} для данной формы I(t) может быть измерена только через $2\cdot 10^{-6}$ с после начала действия импульса тока и именно с этого момента времени в течение $19\cdot 10^{-6}$ с H_{τ} над образцом превышает H_{τ} , измеренное в его отсутствие.