Определение параметров блоков мозаики гидратированного C_3S по уширению дифракционных отражений

Ковалёв В.И., Шилюк Н.А.

Научный руководитель – Юхневский П.И. Белорусский национальный технический университет Минск, Беларусь

Идеальных кристаллов, в которых все атомы находились бы в положениях с минимальной энергией, практически не существует. Отклонения от идеальной решетки могут быть временными и постоянными. Временные отклонения возникают при воздействии на кристалл механических, тепловых и электромагнитных колебаний, при прохождении через кристалл потока быстрых частиц и т. д. К постоянным несовершенствам относятся:

- 1) точечные дефекты (межузельные атомы, вакансии, примеси). Точечные дефекты малы во всех трех измерениях, их размеры по всем направлениям не больше нескольких атомных диаметров;
- 2) линейные дефекты (дислокации, цепочки вакансий и межузельных атомов). Линейные дефекты имеют атомные размеры в двух измерениях, а в третьем они значительно больше размера, который может быть соизмерим с длиной кристалла;
- 3) *плоские или поверхностные дефекты* (границы зерен, границы самого кристалла). Поверхностные дефекты малы только в одном измерении;
- 4) *объемные дефекты*, или макроскопические нарушения (закрытые и открытые поры, трещины, включения постороннего вещества). Объемные дефекты имеют относительно большие размеры, несоизмеримые с атомным диаметром, во всех трех измерениях.

Точечные дефекты повышают энергию кристалла, так как на образование каждого дефекта была затрачена определенная энергия. Вокруг пустого узла или атома в междоузлии решетка искажена. Точечный дефект можно рассматривать в первом приближении как центр сжатия или расширения в упругой среде. Напряжения и деформации вокруг такого центра убывают обратно пропорционально третьей степени расстояния от него. Важной особенностью точеч-

ных дефектов является их подвижность. Перемещение дефектов связано с преодолением потенциальных барьеров, высота которых определяется природой дефекта, структурой решетки и направлением перемещения дефекта. Перескоки вакансий приводят к перемещению атомов, т. е. к самодиффузии примесных атомов замещения. Вакансионный механизм - основной диффузионный механизм.

Реальный кристалл, как известно, состоит из скопления большого числа мелких кристаллов неправильной формы, которые называются зернами или кристаллитами. В свою очередь зерно не является монолитным кристаллом, построенным из строго параллельных атомных слоев. В действительности оно состоит как бы из мозаики отдельных блоков, кристаллографические плоскости в которых повернуты друг относительно друга на небольшой угол — порядка нескольких минут. Такое строение зерна носит название мозаичной структуры, а составлящие ее блоки называют блоками мозаики.

Одним из наиболее доступных и распространенных способов нахождения размеров кристаллитов и микронапряжений в поликристаллических пленках является анализ уширения рентгеновских дифракционных пиков. Размер кристаллитов D может быть определен с использованием простой формулы Шеррера:

$$D = \frac{0.9 \times \lambda}{\beta \times \cos \theta},$$

где λ — длина волны рентгеновского излучения; θ — угол дифракции, β — полная ширина дифракционного отражения на полувысоте интенсивности пика с учетом поправки на инструментальную составляющую β_{θ} .

Метод измерения размеров кристаллитов по формуле Шеррера может быть использован только в том случае, когда диаметр отдельных свободных от напряжений кристаллитов в поликристаллической пленке менее 10^{-4} см. Когда же к уширению линий приводят не только размерные эффекты, но и наличие напряжений, необходимо использовать более строгий метод для нахождения и разделения вкладов в уширение линий от различных источников.

Полное уширение β_t можно определить, как

$$\beta_t^2 = \left(\frac{0.9 \cdot \lambda}{D \cdot \cos \theta}\right)^2 + (4\varepsilon \cdot \tan \theta)^2 + \beta_0^2$$

Экспериментально наблюдаемые уширения нескольких дифракционных пиков можно использовать для вычисления как среднего размера частиц D, так и микронапряжений одновременно. Для нахождения этих параметров необходимо построить зависимость ширины дифракционных пиков от угла Брэгга, и методом наименьших квадратов найти значения диаметров D, ε и β_0 .

Были выполнены рентгенодифракционные исследования гидратированного C_3S на автоматизированном дифрактометре ДРОН-7 в излучении $CuK\alpha$ при условиях фокусировки по Брэггу-Брентано 0-20. Трехкальциевый силикат затворяли водой при $B/\coprod=1,0$ и водой с добавкой суперпластификатора СП-1 в количестве 1% от массы трехкальциевого силиката. Образцы твердели 28 суток в нормально-влажностных условиях, затем высушивали на воздухе при температуре 20-25°C, размалывали в агатовой ступке и пробу просеивали через сито с сеткой №008.

	Экспериментальные данные				
Количе- ство добавки	Интенсив- ность мак- симума пи- ка Альфа1, I max	Положение максимума пика Альфа1, 20max	Меж- плоскост- ное рас- стояние, d,нм	Полу- шири- на, w	Размер кристалли- тов, нм
-	22,9	26,17	0,340	0,449	20,16
	43,8	29,33	0,304	0,274	33,21
	18,8	31,99	0,279	0,140	-
	15,0	50,04	0,182	0,140	-
1% C-3	18,8	26,07	0,341	0,580	15,63
	48,9	29,35	0,304	0,515	17,67
	38,1	32,00	0,279	0,140	-
	11,9	50,08	0,182	0,140	-

В процессе гидратации C_3S образуются гидросиликаты группы C-S-H (I) типа 1.4 нм тоберморита и C-S-H (I) типа женнита. Для

C-S-H (I) характерными являются пики с d=0,304 нм; 0,28 нм; 0,182 нм, а для C-S-H (II) - d=0,340 нм; 0,283 нм; 0,183 нм и др.

С введением С-3 в количестве 1% от массы C_3S происходит уменьшение блоков мозаики с 20-33 до 15-17 нм, что приводит к значительному повышению прочности твердеющей структуры. Чем меньше блоки мозаики, тем выше их химическая активность, и тем более когерентно они связаны с другими фазами структуры, и тем выше прочность. Когда блоки мозаики сильно разориентированы, то при приложении внешней нагрузки происходит интерференция сдвиговых перемещений дислокаций и их затухание. Такая интерференция упрочняет структуру.

Введение в цементные материалы атомных примесей в виде химических добавок способствует образованию дефектов в кристаллических решетках гидросиликатов кальция и легированию структуры, что приводит к затруднению движения дислокаций и повышению прочности композита.

ЛИТЕРАТУРА

- 1. Гусев А. И., Рампель А. А. Нонокристаллические материалы, Москва: Физматлит, 2000, 224 с.
- 2. Коршунов А. Б.// Аналитический метод определения параметров тонкой кристаллической структуры по уширению рентгеновских линий. Заводская лаборатория. 2004.№ 2.с. 27-32.
- 3. Тейлор X. Химия цемента. Пер. с англ. Байковой А. И. и Кузнецовой Т. В., М.: Мир. 1996.-560 с.